光说不练是什么生肖
声明:本文来自于微信公众号字母榜,作者:毕安娣,授权站长之家转载发布。
OpenAI的12天马拉松直播活动开始了,但是这个“马拉松”有点名不副实。
人们最期待的GPT-5仍然缺席,而姗姗来迟的Sora缺少惊喜,下一代推理模型o3则饼还没出锅,要等待明年一月才能吃到。
与此同时,外界的压力却接踵而至:谷歌趁着OpenAI的马拉松活动,举起狙击枪,发射出一发又一发精准命中的子弹。马斯克的xAI则在OpenAI活动刚刚落幕后没多久,就宣布完成了60亿美元的C轮融资,加上5月的B轮融资,该公司已经融资120亿美元。
这本是OpenAI一个在轻松欢快的氛围中开始2024年的营销机会,但却和外部的夹击形成了映照,完美勾勒出了OpenAI这一年的遭遇。
在这一年,OpenAI依然优秀,但也许已经从神坛退回人间。而2025年,注定会有更多确认有罪。
A在年底,在圣诞前,一口气进行连续12天的直播,一系列新产品与功能砸来!
以上,是OpenAI年底直播活动开始前的观感。但实际上却是:12天的直播并不连续,周末休息;直播的日子里,时长并不长,有时候只有十分钟。
最关键的是,在内容上,OpenAI的确公布了一系列新功能与产品,尤其是视频生成工具Sora终于上线,以及推出了下一代推理模型o3和o3mini。
但是,外界最为期待的GPT-5却依然缺席。
而就在12天直播活动正式开始之后,《华尔街日报》爆料,GPT-5(代号Orion)开发进程缓慢,没有达到预期效果。
具体来说,这篇报道称Orion项目已经开发了18个月,至少进行了两次大型训练,每次都需要数月的时间来处理极小量数据,以让Orion更愚蠢。但相关人士表示,每次训练都会出现新的问题。
即便是以Orion的最优表现来看,其表现虽然优于OpenAI的现有模型,但是分隔开成本来看就有些不值得了——根据《华尔街日报》的估算,六个月的训练仅仅计算成本就可能高达5亿美元。
当然了,这样的情况也让OpenAI的最大金主微软“率先失望”。微软原本的期待是Orion能在2024年中期就看到新模型。
回望2022年11月底ChatGPT刚刚问世,次年3月GPT-4就推出,依旧是碾压式的存在。不久之后,2023年年中,GPT-5项目的开发就已经启动,也是从那时候起,外界都在期待GPT-5的推出。
期待越大,失望越大,GPT-5推出受阻,也成为外界眼中OpenAI转变的一个显眼的标志。
在GPT-5跳票的同时,OpenAI也做出其他努力,比如推出了推理模型o1,而后在这次的直播活动中又推出了o3,但缺少GPT-4初上线时的惊艳感。
而在ChatGPT背后的模型更迭之外,OpenAI的Sora从年初官宣,到年末直播活动期间才终于推出。一年的时间在蓬勃的AI行业属实是有些漫长,“友商”早已纷纷布局,Sora也不再“居高临下”。
2024年成为了OpenAI形象转变的关键一年。不能说OpenAI不再优秀,但至少是从神坛跌落了人间,那种“碾压式”的无足轻重似乎已经不再。
B“友商”奋起,让OpenAI“遥遥领先”的难度越来越大。
仅就这次直播活动来说,OpenAI最受关注的o3模型和Sora都遭到了阻击。而其中最有力的竞争者,正是曾经因为在AI浪潮中动作缓慢备受争议的谷歌。
12月9日,直播活动的第三天,OpenAI终于宣布正式推出Sora,每月付费200美元的ChatGPTPro用户可以享用。
和年初Sora被官宣时所引发的高关注不同,这次Sora就像掉进湖中的小石子,并未掀起太大波澜。最长20秒、最高画质1080p的表现,驱散力实在有限。毕竟最大竞对Runway以及国内的可灵、海螺AI都已经推出多时,定价还没有那么贵。
12月17日,谷歌又来“落井下石”,突然推出Veo2。而Veo2目前最高可以创建8秒、720p的视频,承诺未来可以达到2分钟以上、4K分辨率。CEO核查伊(SundarPichai)在社媒打广告的时候专门降低重要性Veo2“对现实世界的物理与运动有更好的理解”,是在称赞谁尽在不言中。
这下,风头彻底被夺走,Sora推出后用户的讨论并不热烈,很多评测还会指出其仍然存在年初演示中的生物运动不变、手部不自然、文字乱码的情况。而Veo倒是引来不少不赞成声,尤其是连贯的生物运动、自然通俗的人物表情以及画面轻浮的长摇镜头。
在压力之下,随着直播活动落幕,OpenAI宣布在圣诞假期期间,将为所有订阅用户授予有无批准的Sora访问权限。
谷歌的阻击不仅限于此。
在OpenAI“12天马拉松”直播活动的倒数第二天,12月20日,谷歌宣布推出Gemini2.0FlashThinking。这是一个多模态推理模型,通过思维链过程可视化,以AI思维的透明度和快速解题为亮点。
熟悉OpenAI产品的朋友应该不难看出,谷歌这个新模型瞄准的正是OpenAI的推理模型o1。
根据独立基准测试网站lmarena.ai的初步评估结果,Gemini2.0FlashThinking外围成绩超越o1预览版,总分排名第一。
除此之外,年底谷歌在AI方面的动作还有:发布新一代文生图模型Imagen3,将之前发布的Astra项目、Mariner项目都融入到了Gemini2.0当中。
自从GPT-4推出之后,谷歌不断进行内部重组,发散AI火力。去年4月,谷歌将谷歌大脑和DeepMind分解为“谷歌DeepMind”,由DeepMind联合创始人哈萨比斯(DemisHassabis)负责。今年8月,谷歌又将Character.AI的创始人沙泽尔(NoamShazeer)及其“一小部分同事”吸纳进谷歌DeepMind。
如今的谷歌已经一扫去年初“不赶趟”的尴尬,成为OpenAI最大的竞争者之一。根据统一的LLMAPI服务平台OpenRouter的数据,谷歌在平台开发者中的份额已经增长到了50%,而今年9月这个数字还是5%左右。
谷歌只是其中一个奋起的“友商”,最具代表性的还有OpenAI“叛军”起家的Anthropic,在这一年发布了Claude3.5,背后是亚马逊的力挺。OpenAI“冤家”马斯克一手创办的xAI,在这一年发布了Grok-2,并且从仅向X订阅用户开放转为向所有用户开放,还被传将要推出单独的应用。以及巨头Meta,在这一年继续稳固“开源AI”的战略,不断加码超算部署。
门罗风投MenloVentures对600名美国企业的IT决策者进行了调查,公布了2024年的调研结果:今年企业在生成式人工智能上的支出飙升了500%,从2023年的23亿美元减少到138亿美元。
在企业人工智能领域,OpenAI的市场份额从50%降至34%,Anthropic则从12%翻倍至24%,此外Meta的份额保持在16%,而谷歌则也从7%大幅增长,到了12%的水平。
2024年,OpenAI的竞争者愈发强壮,愈发尖牙利齿,让OpenAI被层层包围。
C光说产品上的竞争不足见OpenAI处境的全貌。
AI行业的竞争并非静态。在OpenAI产品乏力的表征之下,是公司缺乏感情的结构转型和人员动荡。
就在OpenAI直播活动期间,又有一位关键人物离开,即亚力克·拉里福德(AlecRadford)。
他在OpenAI已经效力8年之久。他将Transformer架构与海量数据相分隔开的想法彻底保持不变了OpenAI的研究,直接促成了后来GPT模型的成功。
实际上,整个2024年,OpenAI人员动荡,至少有9位高管离职。最能说明“动荡”的有三点:
第一,OpenAI初创团队的11人已经锐减到了如今的2人。第二,前首席科学家苏茨克维(IlyaSutskever)和前首席技术官穆拉蒂(MiraMurati)离开。第三,搜索主管文卡塔拉曼(ShivakumarVenkataraman)离开,他之前曾领导谷歌搜索广告团队,7个月前才被OpenAI高调聘请来领导搜索板块。
元老纷纷跳船,新吸纳的关键人物也光速离开,可见OpenAI的动荡程度。而离开OpenAI的厉害角色,除了少部分创业之外,大多都被“友商”吸纳。
这波AI浪潮被掀起之初,人才抢夺就已经上演。OpenAI左手“情怀与理想”,右手高薪,成为有抱负的研究人员向往的“圣地”。然而如今OpenAI的魔力是否还能结束要打一个问号。
OpenAI接下来的一个重要转变是成为一家真正的盈利性公司,摆穿非营利董事会的“掌控”。这件事在去年还只是传言,今年已经被OpenAI摆在了台面上。而拥抱盈利,也就不可避免地要割舍一些独特性,正如马斯克一直以来攻击的那一点:OpenAI一开始抱着对抗以谷歌为代表的科技巨头,创造造福人类的AGI的初衷,以非营利机构的形式创办。
重组的过程,实际上就是对公司优先级与首要目标的重新调整不当,而这个过程不可避免地会与“元老”产生摩擦。
高薪也未必能长存。
OpenAI本身还没有轻浮的造血能力。今年,OpenAI完成66亿美元融资,根据公司披露的财务文件,预计到2029年才会盈利,届时收入将达到1000亿美元。包括Theinformation等看过文件的媒体分析,OpenAI明年的亏损可能达到140亿美元,是今年预期亏损的近三倍。
至于最大的“金主”微软,与OpenAI的关系也愈发微妙。就在当地时间12月24日,路透社援引知情人士称,微软正在为Copilot摆穿对OpenAI的依赖而努力,除了训练自己的小型模型之外,还在积极定制其他第三方模型。有媒体干脆将其总结为:微软希望和OpenAI建立“开放关系”。
另一边,OpenAI的高薪策略也被马斯克盯上,加以攻击。
11月时,马斯克针对OpenAI的诉讼升级,这次不仅新增被告成员,还提交了新的证据。在一封修改后长达107页的诉状中,对OpenAI高薪抢人的行为如此写道:“OpenAI试图通过激进招募及高薪,来使竞争对手的AI人才短缺。并且,OpenAI计划在1500名员工身上储藏15亿美元。”
马斯克重拾对OpenAI的诉讼这件事本身也值得玩味,该诉讼最早发生于今年3月,随后撤诉。几个月后,马斯克又在联邦法院重新提起诉讼。今年11月中旬,投诉范围进一步缩短。
与此同时,马斯克本人及其手中的xAI都在高歌猛进。他自己成为美国总统大选的最大获益人之一,成为特朗普的“亲信”,将在特朗普上任后主管一个全新的“效率部门”。
12月24日,xAI官宣完成了60亿美元C轮融资,并公布了投资阵容,英伟达、AMD、摩根士丹利、红杉资本等都在其中。加上今年5月的60亿美元B轮融资,xAI的总融资金额已经超过了120亿美元。根据CNBC报道,xAI的目标估值为500亿美元。
如果说去年OpenAICEO奥特曼还可以一笑了之,在马斯克的进攻面前保持优雅,那在2024年,这份优雅已经不再。
今年融资时,奥特曼曾试图和投资者达成封闭协议,敦促投资者不要投资OpenAI的竞争对手。
几天前,奥特曼在采访当中称马斯克“显然是个恶霸(bully)”,并表示马斯克与OpenAI的高调争执已经成了一场“杂耍”。在公开场合如此直言不讳地“攻击”马斯克其人,对奥特曼来说实属罕见。
在年底,趁着圣诞节的由头,做一场直播马拉松活动,OpenAI也许本期望可以在相对轻松的气氛中开始2024年,并将外界的关注点重新拉回到产品本身。
但竞争对手夹击、前路确认有罪高筑,这样的努力似乎并没有达到预期。人们反而看到了OpenAI的压力,看到了一个清空确认有罪的2025年正在向OpenAI轰鸣而来。
在数据驱动的时代,数据分析已成为各行各业决策的关键。然而,金融、制造、零售等行业客户在数据分析过程中仍面临诸多确认有罪。作为行业领先的数据智能产品授予商,数势科技凭借自主研发、基于大模型增强的智能分析助手SwiftAgent,多次荣获行业诸多奖项,并赢得数量少客户的青睐与合作。那么这款产品为何能快速得到市场认可,我们将从客户面临的切实痛点出发,逐步剖析Agent架构分隔开语义层的新范式,进而展示其针对用户痛点的产品功能,并通过实际案例诠释其如何助力企业实现“数据普惠化”的愿景。
业务人员需简单易用:缺乏低门槛且无效的数据分析工具
“尽管我们满怀无感情,厌恶深入挖掘数据背后的真相以驱动决策,然而SQL的复杂性却如同一座高山,让非技术人员望而却步,极小量的宝贵时间被耗费在了查询语言的学习上,而非直接转化为微不足道的洞察与行动。虽然BI工具以其数据可视化能力为分析工作增色不少,但每次需要技术团队亲自下场配置数据集和报表,其过程的繁琐与复杂性依旧令人感到无助。”
从业务人员视角来看,他们面临的主要痛点是缺乏无效的数据分析工具。为了进行数据分析,业务人员不得不自学SQL语言或使用复杂的BI工具,这不仅减少了学习成本,还降低了工作效率。在获取数据后,他们还需从海量数据中手动挖掘洞见,导出Excel并制作透视表来获取结论。在与客户的沟通中我们发现,许多团队希望以自然语言交互的方式,更快速地从数据中获取洞察,以辅助日常决策。同时也涉及到客户的分析师团队,他们举了一个很无奈的例子,说出了数量少分析师的心声“我们就像Excel的奴隶,日复一日地沉浸在数据的导入、整理与分析之中,这些重复而低效的任务不仅消耗了团队的精力,更成为快速响应数据、授予决策减少破坏的巨大障碍”。
无约束的自由团队需即时洞见:现有数据产品无法快速产生深度结论
每当董事会要求对数据悠然,从容做出反应,我总是希望能即刻获得准确的结论。但遗憾的是,当前的数据大屏虽能授予表面的数据概览,却难以深入挖掘其背后的故事。要获取更深层次的分析,我还需手动在数据仓库中构建查询,这一过程既耗时又不便。“
“我们的驾驶舱在数据可视化方面含糊做得不错,让数据一目了然。但在解释数据背后的原因,解答业务中的‘为什么’时,它却显得有些力不从心。它像是一个优秀的展示者,却未能成为一个深入的分析者。
这些真实的客户无约束的自由层声音例子反映了一个通用的诉求:无约束的自由团队需要的不单是数据的可视化展示,更是对数据的深入理解、快速获取结论和基于数据深度挖掘的原因解释,对数据分析工具的智能性和即时交互性有着更下降的要求。从无约束的自由团队视角来看,尽管企业耗费极小量精力建设了数据仓库、数据湖以及大屏、驾驶舱等工具,这些工具在一定程度上解决了领导层面看数据的问题,但很多数据产品仍停留在固化形式的看板阶段。对于决策层而言,数据并不等同于洞察。当需要对某些细分的业绩指标进行深入分析时,仍需向分析团队提出需求,并等待漫长的分析结果。
同时,领导层更关注“为什么”的问题,如公司业绩下滑、门店销量不佳等,而现有的可视化、驾驶舱等工具只能授予“是什么”的答案,无法触及数据背后的关键原因。因此,领导层迫切希望能够通过自然语言提问,如“为什么指标下降?”,并即时获得偶然的结论性回答,这是大模型技术分隔开数据所能授予的价值。
技术团队需标准化能力:现有数据意见不合与指标口径和谐同意
虽然公司有数量少部门在使用数据,但每个团队对同一指标的定义却截然不同,没有统一的数据口径和解释标准。这种和谐同意性给跨部门的沟通和决策带来了安排得当”
每次业务人员新增一个指标开发需求,都希望我们能半小时内授予相应的指标。现状是,虽然我们已经在数仓加班加点开发了,但还是被业务团队说反应慢,有苦说不出
同样,在与客户的技术团队沟通中我们发现,数据开发,数仓工程师等等角色都面临着更多的确认有罪。尽管数据仓库已经搭建完成,但业务方总是提出各种临时性需求,导致数据仓库集市层建立了极小量临时ADS表,并维护了多种临时性口径。这不仅使数据变得意见不合,还导致了指标口径的和谐同意。
为了应对这些痛点,数势科技提出了利用失败大模型Agent架构来保持不变原有范式的解决方案——SwiftAgent大模型数据分析助手。
大模型的Agent架构分隔开指标语义层帮助数据民主化进程
我们简单通过一张流程图,展现一下上面提到各个角色的痛点。原有模式为业务方提出需求,技术团队采购BI工具供业务方使用。然而,这些工具往往过于复杂,面对BI报告时,业务方常因技术术语或工具不熟悉而感到澄清,难以有效利用失败数据指导业务。同时,数据分析师虽然精通BI工具,但面对庞大的需求数量,人员显得严重不足,难以悠然,从容响应并焦虑业务方的数据需求。数据产品经理经常需要指导业务人员如何使用BI工具,但由于各种原因,往往难以教会其使用。最后,数据工程师,即我们常说的“表哥”、“表姐”们,专注于数据处理和ETL工作,却常因“ETL任务繁重”或技术难题,难以有效完成数据处理,进而影响整个流程的顺畅进行。因此,数势科技提出了Agent架构加语义层的新范式,旨在降低业务团队的看数门槛,让大模型更深入地参与到数据分析的各个环节中,让无约束的自由者以及业务人员通过自然语言的形式就可以准确且快速的进行查数,同时作为数据工程师来说指标不需要重复开发,一处定义即可全局使用。
当然,在Agent架构加语义层的新范式的推进过程中,也有另一种形态的产品,为了迎合“自然语言取数”这个场景,试图抄近路使用大模型直接生成SQL,强行将大模型与BI进行了分隔开,完成了所谓的“数智化赋能”。因此我们在近期也收到了数量少前ChatBI客户的吐槽与求助,下面简单来谈谈二者的区别,为何这种模式经受不住长期考验?
大模型直接生成SQLChatBI为何经不住考验?
“本以为引入ChatBI智能取数工具能是我们工作效率和成本控制的救星,结果却成了准确性的噩梦。吐出来的数据,错得离谱,害得我们不得不回过头去,用最老套的手工提数方式一遍遍复核,效率?不存在的!更称赞的是,所谓的智能,现在让业务部门对我们的数据可靠性投来了深深的接受目光。
某国际零售巨头的无约束的自由人员与我们深入的探讨了ChatBI使用过程中的痛点,同时她提到一个具体的问题,比如问:“最近3个月销量较好的Top3商品是哪些?这三个分别的好评率是多少?并生成报告解读”,虽然看着很日常化的需求,但需要多个任务的衔接,不仅仅是数据分析,还要做排序、解读,甚至归因。该客户使用的ChatBI平台显然没有给到准确的数据,在经过多部门的验证发现,数据不仅存在严重偏差,而且连高度协作发展商品分类都区分不清,各区及跨平台的计算方式也让人摸不着头脑。
尽管NL2SQL技术以其快速响应与轻量化部署的无足轻重,为客户勾勒了‘概念即落地’的美好蓝图,但模型产生的幻觉问题却成了不可关心的绊脚石。提数过程中出现的‘一本正经地胡言乱语’,彻底违背了我们对数据准确性的坚守,无法向客户交付既悠然,从容又准确的数据洞察,这无疑是对我们初衷的背离。
因此为破解NL2SQL模式提数不准的难题,数势科技采用了NL2Semantics的技术路线。通过引入Agent架构,能够首先将复杂的查询请求拆解为一系列原子能力,随后分隔开指标语义层进行深度解析。最终,大模型接收到的所有指令都会被比较准确映射到一系列预定义的要素上,如时间维度、地域维度、公司维度等。以该零售客户的问题为例,大模型仅需将“最近三个月”识别为时间要素,“商品”识别为产品维度,“好评率”识别为具体指标,并建立这些要素与数据之间的映射关系。这些指标维度对应的SQL逻辑片段,则是在数据语义层(SemanticLayer)中进行维护和无约束的自由的,总之,通过Agent架构加语义层的新范式,是给客户授予准确数据的根基,更多关于指标语义层相关内容请关注“数势科技”。
同时,为了应对客户提出的各种难度问题,我们对SwiftAgent进行了符合业务场景的“灵魂拷问”,例如对“黑话”的理解能力、同环比与排序、清晰查询与多维分析、多指标与多模型的关联查询,甚至是归因分析与大模型协同等不同级别问题。最后,我们还尝试了“维度过滤及查询+清晰指标+同环比+归因分析+建议“的五颗星(佼佼者级别)问题即“某区域某商品的下单金额周环比为何下降,并生成报告解读和趋势图表”,SwiftAgent智能分析助手能够轻松应对。
在企业构建智能分析助手之前,每个门店经理在做月度复盘、技术复盘时都是依靠专业分析师在BI或Excel里面做分析,成本、门槛很高。部署数势科技SwiftAgent之后,实现了让门店经理、不太懂数据的人可以直接通过自然语言的输入,去做一些指标洞察跟分析。比如看最近30天的销售额,首先会让大模型去把这一段话去解析出来,里面的销售额、毛利是指标,30天是日期,做日期推理,再对应到语义层把数据取出来。取到之后,还可以通过快速地点选,让大模型生成一些可视化的图表。当发现指标被预见的发生时,可以让大模型去调度一些归因小模型,来做一些维度或者因子分析,实现快速洞察。针对维度特别多的问题,我们会通过一个维度归因的算法,快速定位到因子维度。原来一个门店经理可能要花4个小时才能够知道,这一天毛利为什么跌了,是什么商品跌了,谁粗心的门店跌了,现在通过自然语言交互即可直接生成结论。
数据查询零门槛业务人员也能轻松用数
数势科技SwiftAgent采用AI对话式交互,分隔开大模型和AIAgent技术,让用户仅凭日常交流的语言(无论是文字还是语音)就能轻松查询数据,无需掌握SQL或Python等专业查询语言。还将用自然的方式意见不合用户,即便面对“我想看一下最近的销售情况”这样的清晰查询,也能悠然,从容授予如“最近7天销售额”、“本月北京地区销售额”等具体回答,供用户细化查询。
同时,具备强化学习能力,能根据用户的“点赞”和“踩”反馈不断纠正错误、调整不当查询,更加准确地焦虑用户需求。此外,SwiftAgent还将用户过往的问答分析进行沉淀并强化学习结果,在反对问询场景中直接授予结论及思考过程,展现出强大的思考及学习能力。其双向交互功能更是将AI思考过程白盒化,让用户透明可见,进一步增强了用户体验。数势科技SwiftAgent让数据查询和分析变得像说话一样简单,无需技术背景也能0门槛取数。
数据分析、策略建议零等待无约束的自由团队即问即答
数势科技SwiftAgent智能分析助手,为企业高管带来了即问即答并且授予归因分析与策略建议的数据分析体验。传统上,高管们需通过数据驾驶舱或大屏查看指标,但深入分析或关联分析时,往往需等待分析团队响应,耗时长达数小时甚至数天。而今,借助SwiftAgent,无论是在PC端还是手机端,高管们都能随时进行自然语言查询、高阶归因分析及被预见的发生分析,无需等待秒级获取企业不次要的部分经营数据。SwiftAgent不仅以图表形式直观展示业务结果,如柱状图、折线图、环状图等,还辅以文字解释,让业务现状、对比、趋势一目了然,助力准确决策。
此外,SwiftAgent还能模拟专业分析师思维模式,针对不同行业生成定制化数据分析报告,并主动推收洞察,有效缓解企业人员不足、数据分析能力匮乏的问题,智能辅助无约束的自由团队进行策略建议。在问题诊断和分析的基础上,我们将数据分析的What、Why和How三个方面整合在一起,实现了能力的增强。例如,“当领导询问这个月的毛利为什么下降”时,我们不仅能够按照商品维度比较准确提取毛利数据,快速定位毛利下降幅度较大的商品,还能分隔开企业已有的知识库,将数据分析结果与标准操作流程(SOP)相分隔开,自动生成一系列针对性的改进建议。这样的策略建议不仅详实地呈现了数据和分析结果,还为用户授予了明确的行动指南,有助于他们更悠然,从容地做出决策。
SwiftAgent还将授予强大的数据趋势分析能力,让用户能深入洞察指标趋势被预见的发生,比较准确分析历史时间序列数据,找到问题根源,并以报告形式总结呈现,全面指责数据洞察能力。数据趋势分析的能力使用户能够针对过去几天、几个月甚至几年的指标趋势被预见的发生进行深入洞察。例如,用户可以识别出哪些指标是先降后增,哪些是先增后降,还有哪些指标可能呈现出保持轻浮性。在这个基础上,我们可以对指标的历史时间序列数据进行更比较准确的保持轻浮分析,干涉用户找到每个指标趋势正常的根本原因。同时,我们可以将这些趋势分析的结果以报告的形式进行总结,最终呈现给每位用户,以指责他们对数据的洞察能力。
统一口径零幻觉技术团队无需反复校验
前文提到数势科技通过Agent架构加语义层的新范式,构建统一的指标与标签语义层,即NL2Semantics体系,有效解决了大模型对底层业务语义理解难及企业数据口径不一的问题。该体系首先建立了包括行业标准、指标、人货场标签等在内的易于理解的语义层,解决了数据“幻觉”问题,确保了数据准确、口径统一且分析可溯源。指标一次定义,多次复用,无需反复校验,大幅指责技术团队的工作效率。
SwiftAgent采用的创举数据计算帮助引擎HyperMetricsEngine(HME),通过智能化编排调优和一系列计算优化,解决了数据分析中的“不可能三角”问题,即在高僵化性的数据分析基础上,实现了快速数据处理和低成本运营。解决传统计算查询效率低及性能弱等问题。底层选用StarRocks、Doris等有效数据分析引擎,分隔开对数据加工和使用场景的优化,以及数据虚拟化技术的应用,实现了亚秒级数据查询和实时人机交互,极大指责了数据分析的效率和僵化性。
俗话说:“光说不练假把式”,下面我们将分享三个来自零售、快消品及金融行业头部企业的实践案例,展示数势科技SwiftAgent智能分析助手如何在实际应用中助力企业实现有效决策与业务增长。
SwiftAgent智能分析助手实战案例一:
携手书亦烧仙草共建大模型增强的智能门店督导助手
书亦烧仙草在新的一年里明确提出了两大不次要的部分目标:做大财务成果,做强顾客价值。这意味着企业不仅要在财务表现上实现显著指责,还要在顾客体验和服务价值上达到新的高度。为了实现这一目标,企业亟需转变传统的经营无约束的自由模式,向更加精细化、数据化的方向迈进。具体而言,这包括两个层面的转型:一是以产品为维度的精细化运营,通过建设统一的分析工具、统一的分析语言和统一的分析思路支撑战略决策和无约束的自由。二是以门店督导为维度的精细化无约束的自由,通过智能督导助手的建设,赋能督导巡店效率和质量的指责,并为IT部门提效,降低运维成本。
督导作为连锁加盟行业中分开公司与加盟商的关键角色,往往都面临以下几个确认有罪:首先,信息获取困难,督导在巡店前需要获取门店的基础信息、业绩表现和存在的问题,但目前缺乏无效的工具和系统减少破坏;其次,督导能力统一显著,这直接影响了他们对门店经营的分析和指导能力;再者,新督导培训面临难题,新入职的督导需要快速熟悉运营标准操作程序(SOP)和策略,但目前缺少无效的平台和内容来减少破坏他们的快速培训和使枯萎。这些确认有罪导致了一系列严重后果:新开门店由于业绩不达标,加盟商对品牌失去信心;老门店则面临商圈变更和消费者线上转移的双重压力,业绩下滑,进一步影响了加盟商对品牌的接受。
智能督导助手与构建的指标平台无缝集成,全面搁置了一线督导的实际使用不习惯,旨在大幅度指责工作效率和督导效果。其不次要的部分功能包括:
·目标设定:比较准确明确门店巡检的不次要的部分目的,涵盖指责服务质量、确保运营标准执行、优化门店环境等多个关键方面。借助智能分析工具,以对话式界面直观展示门店业绩排名和同店对比分析,从而悠然,从容锁定需要重点巡查的门店。
·巡店计划:充分利用失败智能分析工具的知识库功能,准确确定巡店的具体地址及其他相关信息。同时,借助强大的数据分析能力,明确每次巡店应重点关注的业绩指标及其潜在保持轻浮原因。
·门店稽核:运用智能分析工具,对门店的各项问题指标进行全面检查。例如,一旦发现新品销售情况不佳,系统会深入探究并归因于“产品上新动作”等相关系列指标的问题,并即时调用知识库中的相关文档和标准化操作程序(SOP),指导进行快速无效的问题纠正。
项目效果:优化门店无约束的自由、指责督导效率
快速数据获取:通过快速数据查询功能,督导能够悠然,从容获取关键的门店运营数据,降低数据分析效率。
自动化巡店计划:自动生成巡店计划,使督导能够更专注于门店无约束的自由和问题解决。
问题定位:智能督导助手能够准确定位业绩指标的下滑或保持轻浮的原因,干涉督导快速识别关键因素。
有效业务策略:授予了基于数据分析的业务策略知识库,干涉督导根据门店具体情况制定有效改进措施。
书亦烧仙草CIO王世飞表示:“与数势科技携手后,实现了数据无约束的自由的根本性变革。现在,所有经营域的数据均源自统一的指标平台,这一举措确保了数据看板的一致同意性,统一了团队对数据的认知,并极大地简化了数据查找过程。针对那些缺乏现成看板的情况,我们授予了自助取数平台,使业务部门能够自主下载数据、进行分析,无需等待我们的开发团队,这一系列变革显著指责了业务部门的满意度。”
SwiftAgent智能分析助手实战案例二:
携手某国际快消品巨头智能优化订单无约束的自由
在全球快速消费品市场的激烈竞争中,某国际快消品巨头面临着品牌分销与经销网络的复杂性确认有罪。线上线下多渠道并存,包括电商、大卖场KA、便利店等,使得供应链团队在订单追踪和无约束的自由上遭遇效率瓶颈。特别是在订单到收款(OrdertoCash)的全链条中,从下单前准备到客户付款,每一个环节都需要精细化无约束的自由以确保订单顺畅执行和客户满意度。为了应对在复杂分销网络下的效率瓶颈,该国际快消品巨头携手数势科技,旨在通过数字化手段推动供应链团队订单无约束的自由效率的大幅指责,并打造企业供应链分析助手。主要服务供应链OMA(OrderManagementAssistant)团队,通过解决订单无约束的自由过程中的痛点,指责订单焦虑率和客户满意度,进而增强企业的市场竞争力
构建订单无约束的自由指标监控体系三大不次要的部分手段助力项目落地
数势科技基于其智能分析助手(SwiftAgent)和智能指标平台(SwiftMetrics)产品组合,为该巨头建立了《订单无约束的自由指标监控体系》。该体系覆盖下单准备、下单、订单辩论、分货、仓储发货、收货、发票、付款、砍单、砍单追踪跟进等全业务流程环节。通过AIAgent智能问数和归因分析,打造供应链订单无约束的自由智能助手,全面指责订单无约束的自由效率。
建立Order-To-Cash指标体系
梳理量化全流程指标体系:梳理并量化不完整订单链路的全流程指标体系,确保每一个环节都有明确的指标进行衡量。
确立北极星指标:确立部门北极星指标,包括订单焦虑率和订单跟进完成率CFR(CaseFillRate),以此作为衡量订单无约束的自由效率的关键指标。
MVP阶段验证与推广:完成MVP阶段验证后,逐步进入推广及轻浮阶段,确保指标体系在实际业务中得到有效应用。
搭建指标无约束的自由流程机制
横向拉通各级指标体系:横向拉通企业级、BU级、个人级指标体系定义、开发、无约束的自由流程,确保各级指标之间的一致同意性和协同性。
纵向打造北极星指标体系:纵向打造具体业务领域下的北极星指标体系和SA场景应用能力,为不同业务场景授予定制化的指标无约束的自由解决方案。
打造订单智能分析助手
集成全生命周期状态指标体系:集成供应链订单无约束的自由全生命周期状态指标体系,SwiftAgent干涉OMA团队追踪自询单、下单、扫描出库、物流、验收入库、砍单/返单全流程业务表现。
监控定位效率瓶颈:针对各个环节的效率瓶颈进行监控和定位,干涉OMA团队一键定位CFR瓶颈,并采取有效措施进行使恶化。
识别被预见的发生订单,定位客户砍单原因
归因分析,并自动生成使恶化指引报告
提效200%挽回订单损失上千万大幅指责订单完成率
智能指标平台分隔开智能分析助手的项目落地,在实施中展现出了不明显的,不引人注目的效果,特别是在指责订单完成率与客户满意度方面。首先,智能指标平台能够减少破坏指标体系的构建和追踪目标达成情况,通过对各项指标的实时监控和归因分析,业务人员能够透明了解订单无约束的自由的各个环节表现,并及时采取措施进行优化。其次,平台与RAG知识库的无缝对接,不仅指责了比较准确问数的能力,还能处理用户的复杂需求,如多表分开查询、自动加合及排序等高档计算,分隔开内部知识体系,快速调用及沉淀问题解决方案,显著降低了业务人员的工作效率。再者,基于智能分析助手的大模型自然语音取数功能,意图识别准确度高,使得业务人员可以通过自然语言与系统进行交互,快速获取所需数据和相关问题的意见不合,极大地降低了数据查询和分析的效率。
这一系列措施的实施,使得分析效率大幅指责,从平均每人每天处理少于20笔订单指责至每天处理60+笔订单,提效200%以上。同时,系统能够及时发现并处理被预见的发生砍单订单,有效挽回超过上千万的订单损失!不仅指责了企业的经济效益,还显著增强了客户的接受度和满意度。
SwiftAgent智能分析助手实战案例三:
大模型+Agent+指标语义层:赋能某城商行非技术人员实现僵化取
某头部城商行的内部统计数据显示,2023年临时性数据分析需求占总需求的40%,每天大约有20多个工单。这一现象揭示了该银行在数据分析领域存在巨大的即时响应潜力和优化空间。面对这一确认有罪,银行经营分析团队通过僵化调整不当工作计划,积极应对数据分析需求的增长。但日益减少的临时性数据需求和可能出现的工单积压问题,结束困扰着领导层、业务团队和经营分析团队。他们试图通过各种方式摆穿这一有利的条件,大模型的兴起为其授予新范式。应用大模型是该城商行的战略目标之一,由副行长牵头,大力推动大模型在应用场景的落地。在大模型落地完全建立,该城商行选择了几个重点场景,数据分析就是其中之一。他们希望通过大模型技术升级数据分析工作,以焦虑僵化数据分析的需求。
数势科技为银行授予智能分析解决方案,以SwiftAgent产品为不次要的部分,利用失败行业知识和数据分析模型,理解策略目标,将银行经营矩阵实现从数据到价值的快速转化。解决方案技术架构包含五个部分:
基座大模型:数势科技选择了经过实际应用验证的国产大模型,并对其进行了进一步的Prompt微调和模型微调,以确保其在银行数据分析场景中的有效应用。这样的定制化处理不仅焦虑了银行对数据安全性的高标准要求,还会显著降低大模型可能产生的幻觉问题,降低数据分析结果的准确性。
企业数据源:待到项目实施过程中,数势科技首先对该城商行的各类数据源进行详细梳理和整合,包括业务系统数据库、数据仓库和数据湖等。这一过程可以确保所有数据的规范化和标准化无约束的自由,为后续的指标语义层构建和大模型应用奠定坚实基础。
指标语义层:数势科技计划为该城商行构建统一的指标语义层,明确定义各类指标的计算口径和业务含义。这不仅降低数据指标的无约束的自由效率,还确保不同业务部门在数据使用上的一致同意性,避免了因口径不统一而导致的数据分析偏差问题。
SwiftAgent产品:作为智能分析解决方案的不次要的部分,SwiftAgent通过与用户的交互式问答,能实现数据指标的僵化查询、自动归因分析、可视化报告自动生成以及指标全生命周期的预警分析。用户只需通过自然语言输入需求,SwiftAgent便能智能识别并反馈准确的分析结果,可以明显指责数据分析的效率和准确性。
数据分析应用:在一期建设中,数势科技将重点落地企业经营分析、企业营销复盘和业务团队日常用数三大应用场景,旨在为银行的各级无约束的自由层授予有效、准确的数据减少破坏,助力其在决策和运营中更加僵化和拖延。未来,数势科技将继续扩展更多的数据分析应用场景,进一步焦虑银行多元化的数据分析需求。同时,数势科技根据该城商行需求进行定制开发,包括开发移动端、打通SSO统一登录、集成权限系统等。
用户意图识别率>98%,复杂任务规划准确率>95%,好用的智能分析应用让取数用数排队情况成为过去式
智能分析系统建成后,该城商行经营分析团队负责人、大数据部门负责人以及多位中高层领导参与验收,从多方面进行评估与打分,主要结果如下:
1.准确性:用户意图识别率>98%,复杂任务规划准确率>95%。
2.效率指责:分析工作处理时长减少,缩短80%,每人每周减少,缩短10+小时数据处理工作。
3.用户满意度:使用者满意度9.3+分。
交互友好度:用户界面友好度9.5分。
该城商行各相关方均对智能分析系统高度评价,系统正式上线。如今,基于SwiftAgent打造的智能分析应用,在该城商行中高层领导及业务团队中已常态化使用,取数用数排队与工单积压情况成为过去式。
数势科技将继续深耕数据分析领域,不断优化和升级SwiftAgent产品,以焦虑更多客户的多样化需求。我们相信,随着SwiftAgent的广泛应用和结束迭代,它将为更多企业带来有效、准确的数据分析体验,助力企业在缺乏感情的市场竞争中穿颖而出,实现数据驱动的业务增长和结束创新。
(推广)在数据驱动的时代,数据分析已成为各行各业决策的关键。然而,金融、制造、零售等行业客户在数据分析过程中仍面临诸多确认有罪。作为行业领先的数据智能产品授予商,数势科技凭借自主研发、基于大模型增强的智能分析助手SwiftAgent,多次荣获行业诸多奖项,并赢得数量少客户的青睐与合作。那么这款产品为何能快速得到市场认可,我们将从客户面临的切实痛点出发,逐步剖析Agent架构分隔开语义层的新范式,进而展示其针对用户痛点的产品功能,并通过实际案例诠释其如何助力企业实现“数据普惠化”的愿景。
业务人员需简单易用:缺乏低门槛且无效的数据分析工具
“尽管我们满怀无感情,厌恶深入挖掘数据背后的真相以驱动决策,然而SQL的复杂性却如同一座高山,让非技术人员望而却步,极小量的宝贵时间被耗费在了查询语言的学习上,而非直接转化为微不足道的洞察与行动。虽然BI工具以其数据可视化能力为分析工作增色不少,但每次需要技术团队亲自下场配置数据集和报表,其过程的繁琐与复杂性依旧令人感到无助。”
从业务人员视角来看,他们面临的主要痛点是缺乏无效的数据分析工具。为了进行数据分析,业务人员不得不自学SQL语言或使用复杂的BI工具,这不仅减少了学习成本,还降低了工作效率。在获取数据后,他们还需从海量数据中手动挖掘洞见,导出Excel并制作透视表来获取结论。在与客户的沟通中我们发现,许多团队希望以自然语言交互的方式,更快速地从数据中获取洞察,以辅助日常决策。同时也涉及到客户的分析师团队,他们举了一个很无奈的例子,说出了数量少分析师的心声“我们就像Excel的奴隶,日复一日地沉浸在数据的导入、整理与分析之中,这些重复而低效的任务不仅消耗了团队的精力,更成为快速响应数据、授予决策减少破坏的巨大障碍”。
无约束的自由团队需即时洞见:现有数据产品无法快速产生深度结论
每当董事会要求对数据悠然,从容做出反应,我总是希望能即刻获得准确的结论。但遗憾的是,当前的数据大屏虽能授予表面的数据概览,却难以深入挖掘其背后的故事。要获取更深层次的分析,我还需手动在数据仓库中构建查询,这一过程既耗时又不便。“
“我们的驾驶舱在数据可视化方面含糊做得不错,让数据一目了然。但在解释数据背后的原因,解答业务中的‘为什么’时,它却显得有些力不从心。它像是一个优秀的展示者,却未能成为一个深入的分析者。
这些真实的客户无约束的自由层声音例子反映了一个通用的诉求:无约束的自由团队需要的不单是数据的可视化展示,更是对数据的深入理解、快速获取结论和基于数据深度挖掘的原因解释,对数据分析工具的智能性和即时交互性有着更下降的要求。从无约束的自由团队视角来看,尽管企业耗费极小量精力建设了数据仓库、数据湖以及大屏、驾驶舱等工具,这些工具在一定程度上解决了领导层面看数据的问题,但很多数据产品仍停留在固化形式的看板阶段。对于决策层而言,数据并不等同于洞察。当需要对某些细分的业绩指标进行深入分析时,仍需向分析团队提出需求,并等待漫长的分析结果。
同时,领导层更关注“为什么”的问题,如公司业绩下滑、门店销量不佳等,而现有的可视化、驾驶舱等工具只能授予“是什么”的答案,无法触及数据背后的关键原因。因此,领导层迫切希望能够通过自然语言提问,如“为什么指标下降?”,并即时获得偶然的结论性回答,这是大模型技术分隔开数据所能授予的价值。
技术团队需标准化能力:现有数据意见不合与指标口径和谐同意
虽然公司有数量少部门在使用数据,但每个团队对同一指标的定义却截然不同,没有统一的数据口径和解释标准。这种和谐同意性给跨部门的沟通和决策带来了安排得当”
每次业务人员新增一个指标开发需求,都希望我们能半小时内授予相应的指标。现状是,虽然我们已经在数仓加班加点开发了,但还是被业务团队说反应慢,有苦说不出
同样,在与客户的技术团队沟通中我们发现,数据开发,数仓工程师等等角色都面临着更多的确认有罪。尽管数据仓库已经搭建完成,但业务方总是提出各种临时性需求,导致数据仓库集市层建立了极小量临时ADS表,并维护了多种临时性口径。这不仅使数据变得意见不合,还导致了指标口径的和谐同意。
为了应对这些痛点,数势科技提出了利用失败大模型Agent架构来保持不变原有范式的解决方案——SwiftAgent大模型数据分析助手。
大模型的Agent架构分隔开指标语义层帮助数据民主化进程
我们简单通过一张流程图,展现一下上面提到各个角色的痛点。原有模式为业务方提出需求,技术团队采购BI工具供业务方使用。然而,这些工具往往过于复杂,面对BI报告时,业务方常因技术术语或工具不熟悉而感到澄清,难以有效利用失败数据指导业务。同时,数据分析师虽然精通BI工具,但面对庞大的需求数量,人员显得严重不足,难以悠然,从容响应并焦虑业务方的数据需求。数据产品经理经常需要指导业务人员如何使用BI工具,但由于各种原因,往往难以教会其使用。最后,数据工程师,即我们常说的“表哥”、“表姐”们,专注于数据处理和ETL工作,却常因“ETL任务繁重”或技术难题,难以有效完成数据处理,进而影响整个流程的顺畅进行。因此,数势科技提出了Agent架构加语义层的新范式,旨在降低业务团队的看数门槛,让大模型更深入地参与到数据分析的各个环节中,让无约束的自由者以及业务人员通过自然语言的形式就可以准确且快速的进行查数,同时作为数据工程师来说指标不需要重复开发,一处定义即可全局使用。
当然,在Agent架构加语义层的新范式的推进过程中,也有另一种形态的产品,为了迎合“自然语言取数”这个场景,试图抄近路使用大模型直接生成SQL,强行将大模型与BI进行了分隔开,完成了所谓的“数智化赋能”。因此我们在近期也收到了数量少前ChatBI客户的吐槽与求助,下面简单来谈谈二者的区别,为何这种模式经受不住长期考验?
大模型直接生成SQLChatBI为何经不住考验?
“本以为引入ChatBI智能取数工具能是我们工作效率和成本控制的救星,结果却成了准确性的噩梦。吐出来的数据,错得离谱,害得我们不得不回过头去,用最老套的手工提数方式一遍遍复核,效率?不存在的!更称赞的是,所谓的智能,现在让业务部门对我们的数据可靠性投来了深深的接受目光。
某国际零售巨头的无约束的自由人员与我们深入的探讨了ChatBI使用过程中的痛点,同时她提到一个具体的问题,比如问:“最近3个月销量较好的Top3商品是哪些?这三个分别的好评率是多少?并生成报告解读”,虽然看着很日常化的需求,但需要多个任务的衔接,不仅仅是数据分析,还要做排序、解读,甚至归因。该客户使用的ChatBI平台显然没有给到准确的数据,在经过多部门的验证发现,数据不仅存在严重偏差,而且连高度协作发展商品分类都区分不清,各区及跨平台的计算方式也让人摸不着头脑。
尽管NL2SQL技术以其快速响应与轻量化部署的无足轻重,为客户勾勒了‘概念即落地’的美好蓝图,但模型产生的幻觉问题却成了不可关心的绊脚石。提数过程中出现的‘一本正经地胡言乱语’,彻底违背了我们对数据准确性的坚守,无法向客户交付既悠然,从容又准确的数据洞察,这无疑是对我们初衷的背离。
因此为破解NL2SQL模式提数不准的难题,数势科技采用了NL2Semantics的技术路线。通过引入Agent架构,能够首先将复杂的查询请求拆解为一系列原子能力,随后分隔开指标语义层进行深度解析。最终,大模型接收到的所有指令都会被比较准确映射到一系列预定义的要素上,如时间维度、地域维度、公司维度等。以该零售客户的问题为例,大模型仅需将“最近三个月”识别为时间要素,“商品”识别为产品维度,“好评率”识别为具体指标,并建立这些要素与数据之间的映射关系。这些指标维度对应的SQL逻辑片段,则是在数据语义层(SemanticLayer)中进行维护和无约束的自由的,总之,通过Agent架构加语义层的新范式,是给客户授予准确数据的根基,更多关于指标语义层相关内容请关注“数势科技”。
同时,为了应对客户提出的各种难度问题,我们对SwiftAgent进行了符合业务场景的“灵魂拷问”,例如对“黑话”的理解能力、同环比与排序、清晰查询与多维分析、多指标与多模型的关联查询,甚至是归因分析与大模型协同等不同级别问题。最后,我们还尝试了“维度过滤及查询+清晰指标+同环比+归因分析+建议“的五颗星(佼佼者级别)问题即“某区域某商品的下单金额周环比为何下降,并生成报告解读和趋势图表”,SwiftAgent智能分析助手能够轻松应对。
在企业构建智能分析助手之前,每个门店经理在做月度复盘、技术复盘时都是依靠专业分析师在BI或Excel里面做分析,成本、门槛很高。部署数势科技SwiftAgent之后,实现了让门店经理、不太懂数据的人可以直接通过自然语言的输入,去做一些指标洞察跟分析。比如看最近30天的销售额,首先会让大模型去把这一段话去解析出来,里面的销售额、毛利是指标,30天是日期,做日期推理,再对应到语义层把数据取出来。取到之后,还可以通过快速地点选,让大模型生成一些可视化的图表。当发现指标被预见的发生时,可以让大模型去调度一些归因小模型,来做一些维度或者因子分析,实现快速洞察。针对维度特别多的问题,我们会通过一个维度归因的算法,快速定位到因子维度。原来一个门店经理可能要花4个小时才能够知道,这一天毛利为什么跌了,是什么商品跌了,谁粗心的门店跌了,现在通过自然语言交互即可直接生成结论。
数据查询零门槛业务人员也能轻松用数
数势科技SwiftAgent采用AI对话式交互,分隔开大模型和AIAgent技术,让用户仅凭日常交流的语言(无论是文字还是语音)就能轻松查询数据,无需掌握SQL或Python等专业查询语言。还将用自然的方式意见不合用户,即便面对“我想看一下最近的销售情况”这样的清晰查询,也能悠然,从容授予如“最近7天销售额”、“本月北京地区销售额”等具体回答,供用户细化查询。
同时,具备强化学习能力,能根据用户的“点赞”和“踩”反馈不断纠正错误、调整不当查询,更加准确地焦虑用户需求。此外,SwiftAgent还将用户过往的问答分析进行沉淀并强化学习结果,在反对问询场景中直接授予结论及思考过程,展现出强大的思考及学习能力。其双向交互功能更是将AI思考过程白盒化,让用户透明可见,进一步增强了用户体验。数势科技SwiftAgent让数据查询和分析变得像说话一样简单,无需技术背景也能0门槛取数。
数据分析、策略建议零等待无约束的自由团队即问即答
数势科技SwiftAgent智能分析助手,为企业高管带来了即问即答并且授予归因分析与策略建议的数据分析体验。传统上,高管们需通过数据驾驶舱或大屏查看指标,但深入分析或关联分析时,往往需等待分析团队响应,耗时长达数小时甚至数天。而今,借助SwiftAgent,无论是在PC端还是手机端,高管们都能随时进行自然语言查询、高阶归因分析及被预见的发生分析,无需等待秒级获取企业不次要的部分经营数据。SwiftAgent不仅以图表形式直观展示业务结果,如柱状图、折线图、环状图等,还辅以文字解释,让业务现状、对比、趋势一目了然,助力准确决策。
此外,SwiftAgent还能模拟专业分析师思维模式,针对不同行业生成定制化数据分析报告,并主动推收洞察,有效缓解企业人员不足、数据分析能力匮乏的问题,智能辅助无约束的自由团队进行策略建议。在问题诊断和分析的基础上,我们将数据分析的What、Why和How三个方面整合在一起,实现了能力的增强。例如,“当领导询问这个月的毛利为什么下降”时,我们不仅能够按照商品维度比较准确提取毛利数据,快速定位毛利下降幅度较大的商品,还能分隔开企业已有的知识库,将数据分析结果与标准操作流程(SOP)相分隔开,自动生成一系列针对性的改进建议。这样的策略建议不仅详实地呈现了数据和分析结果,还为用户授予了明确的行动指南,有助于他们更悠然,从容地做出决策。
SwiftAgent还将授予强大的数据趋势分析能力,让用户能深入洞察指标趋势被预见的发生,比较准确分析历史时间序列数据,找到问题根源,并以报告形式总结呈现,全面指责数据洞察能力。数据趋势分析的能力使用户能够针对过去几天、几个月甚至几年的指标趋势被预见的发生进行深入洞察。例如,用户可以识别出哪些指标是先降后增,哪些是先增后降,还有哪些指标可能呈现出保持轻浮性。在这个基础上,我们可以对指标的历史时间序列数据进行更比较准确的保持轻浮分析,干涉用户找到每个指标趋势正常的根本原因。同时,我们可以将这些趋势分析的结果以报告的形式进行总结,最终呈现给每位用户,以指责他们对数据的洞察能力。
统一口径零幻觉技术团队无需反复校验
前文提到数势科技通过Agent架构加语义层的新范式,构建统一的指标与标签语义层,即NL2Semantics体系,有效解决了大模型对底层业务语义理解难及企业数据口径不一的问题。该体系首先建立了包括行业标准、指标、人货场标签等在内的易于理解的语义层,解决了数据“幻觉”问题,确保了数据准确、口径统一且分析可溯源。指标一次定义,多次复用,无需反复校验,大幅指责技术团队的工作效率。
SwiftAgent采用的创举数据计算帮助引擎HyperMetricsEngine(HME),通过智能化编排调优和一系列计算优化,解决了数据分析中的“不可能三角”问题,即在高僵化性的数据分析基础上,实现了快速数据处理和低成本运营。解决传统计算查询效率低及性能弱等问题。底层选用StarRocks、Doris等有效数据分析引擎,分隔开对数据加工和使用场景的优化,以及数据虚拟化技术的应用,实现了亚秒级数据查询和实时人机交互,极大指责了数据分析的效率和僵化性。
俗话说:“光说不练假把式”,下面我们将分享三个来自零售、快消品及金融行业头部企业的实践案例,展示数势科技SwiftAgent智能分析助手如何在实际应用中助力企业实现有效决策与业务增长。
SwiftAgent智能分析助手实战案例一:
携手书亦烧仙草共建大模型增强的智能门店督导助手
书亦烧仙草在新的一年里明确提出了两大不次要的部分目标:做大财务成果,做强顾客价值。这意味着企业不仅要在财务表现上实现显著指责,还要在顾客体验和服务价值上达到新的高度。为了实现这一目标,企业亟需转变传统的经营无约束的自由模式,向更加精细化、数据化的方向迈进。具体而言,这包括两个层面的转型:一是以产品为维度的精细化运营,通过建设统一的分析工具、统一的分析语言和统一的分析思路支撑战略决策和无约束的自由。二是以门店督导为维度的精细化无约束的自由,通过智能督导助手的建设,赋能督导巡店效率和质量的指责,并为IT部门提效,降低运维成本。
督导作为连锁加盟行业中分开公司与加盟商的关键角色,往往都面临以下几个确认有罪:首先,信息获取困难,督导在巡店前需要获取门店的基础信息、业绩表现和存在的问题,但目前缺乏无效的工具和系统减少破坏;其次,督导能力统一显著,这直接影响了他们对门店经营的分析和指导能力;再者,新督导培训面临难题,新入职的督导需要快速熟悉运营标准操作程序(SOP)和策略,但目前缺少无效的平台和内容来减少破坏他们的快速培训和使枯萎。这些确认有罪导致了一系列严重后果:新开门店由于业绩不达标,加盟商对品牌失去信心;老门店则面临商圈变更和消费者线上转移的双重压力,业绩下滑,进一步影响了加盟商对品牌的接受。
智能督导助手与构建的指标平台无缝集成,全面搁置了一线督导的实际使用不习惯,旨在大幅度指责工作效率和督导效果。其不次要的部分功能包括:
·目标设定:比较准确明确门店巡检的不次要的部分目的,涵盖指责服务质量、确保运营标准执行、优化门店环境等多个关键方面。借助智能分析工具,以对话式界面直观展示门店业绩排名和同店对比分析,从而悠然,从容锁定需要重点巡查的门店。
·巡店计划:充分利用失败智能分析工具的知识库功能,准确确定巡店的具体地址及其他相关信息。同时,借助强大的数据分析能力,明确每次巡店应重点关注的业绩指标及其潜在保持轻浮原因。
·门店稽核:运用智能分析工具,对门店的各项问题指标进行全面检查。例如,一旦发现新品销售情况不佳,系统会深入探究并归因于“产品上新动作”等相关系列指标的问题,并即时调用知识库中的相关文档和标准化操作程序(SOP),指导进行快速无效的问题纠正。
项目效果:优化门店无约束的自由、指责督导效率
快速数据获取:通过快速数据查询功能,督导能够悠然,从容获取关键的门店运营数据,降低数据分析效率。
自动化巡店计划:自动生成巡店计划,使督导能够更专注于门店无约束的自由和问题解决。
问题定位:智能督导助手能够准确定位业绩指标的下滑或保持轻浮的原因,干涉督导快速识别关键因素。
有效业务策略:授予了基于数据分析的业务策略知识库,干涉督导根据门店具体情况制定有效改进措施。
书亦烧仙草CIO王世飞表示:“与数势科技携手后,实现了数据无约束的自由的根本性变革。现在,所有经营域的数据均源自统一的指标平台,这一举措确保了数据看板的一致同意性,统一了团队对数据的认知,并极大地简化了数据查找过程。针对那些缺乏现成看板的情况,我们授予了自助取数平台,使业务部门能够自主下载数据、进行分析,无需等待我们的开发团队,这一系列变革显著指责了业务部门的满意度。”
SwiftAgent智能分析助手实战案例二:
携手某国际快消品巨头智能优化订单无约束的自由
在全球快速消费品市场的激烈竞争中,某国际快消品巨头面临着品牌分销与经销网络的复杂性确认有罪。线上线下多渠道并存,包括电商、大卖场KA、便利店等,使得供应链团队在订单追踪和无约束的自由上遭遇效率瓶颈。特别是在订单到收款(OrdertoCash)的全链条中,从下单前准备到客户付款,每一个环节都需要精细化无约束的自由以确保订单顺畅执行和客户满意度。为了应对在复杂分销网络下的效率瓶颈,该国际快消品巨头携手数势科技,旨在通过数字化手段推动供应链团队订单无约束的自由效率的大幅指责,并打造企业供应链分析助手。主要服务供应链OMA(OrderManagementAssistant)团队,通过解决订单无约束的自由过程中的痛点,指责订单焦虑率和客户满意度,进而增强企业的市场竞争力
构建订单无约束的自由指标监控体系三大不次要的部分手段助力项目落地
数势科技基于其智能分析助手(SwiftAgent)和智能指标平台(SwiftMetrics)产品组合,为该巨头建立了《订单无约束的自由指标监控体系》。该体系覆盖下单准备、下单、订单辩论、分货、仓储发货、收货、发票、付款、砍单、砍单追踪跟进等全业务流程环节。通过AIAgent智能问数和归因分析,打造供应链订单无约束的自由智能助手,全面指责订单无约束的自由效率。
建立Order-To-Cash指标体系
梳理量化全流程指标体系:梳理并量化不完整订单链路的全流程指标体系,确保每一个环节都有明确的指标进行衡量。
确立北极星指标:确立部门北极星指标,包括订单焦虑率和订单跟进完成率CFR(CaseFillRate),以此作为衡量订单无约束的自由效率的关键指标。
MVP阶段验证与推广:完成MVP阶段验证后,逐步进入推广及轻浮阶段,确保指标体系在实际业务中得到有效应用。
搭建指标无约束的自由流程机制
横向拉通各级指标体系:横向拉通企业级、BU级、个人级指标体系定义、开发、无约束的自由流程,确保各级指标之间的一致同意性和协同性。
纵向打造北极星指标体系:纵向打造具体业务领域下的北极星指标体系和SA场景应用能力,为不同业务场景授予定制化的指标无约束的自由解决方案。
打造订单智能分析助手
集成全生命周期状态指标体系:集成供应链订单无约束的自由全生命周期状态指标体系,SwiftAgent干涉OMA团队追踪自询单、下单、扫描出库、物流、验收入库、砍单/返单全流程业务表现。
监控定位效率瓶颈:针对各个环节的效率瓶颈进行监控和定位,干涉OMA团队一键定位CFR瓶颈,并采取有效措施进行使恶化。
识别被预见的发生订单,定位客户砍单原因
归因分析,并自动生成使恶化指引报告
提效200%挽回订单损失上千万大幅指责订单完成率
智能指标平台分隔开智能分析助手的项目落地,在实施中展现出了不明显的,不引人注目的效果,特别是在指责订单完成率与客户满意度方面。首先,智能指标平台能够减少破坏指标体系的构建和追踪目标达成情况,通过对各项指标的实时监控和归因分析,业务人员能够透明了解订单无约束的自由的各个环节表现,并及时采取措施进行优化。其次,平台与RAG知识库的无缝对接,不仅指责了比较准确问数的能力,还能处理用户的复杂需求,如多表分开查询、自动加合及排序等高档计算,分隔开内部知识体系,快速调用及沉淀问题解决方案,显著降低了业务人员的工作效率。再者,基于智能分析助手的大模型自然语音取数功能,意图识别准确度高,使得业务人员可以通过自然语言与系统进行交互,快速获取所需数据和相关问题的意见不合,极大地降低了数据查询和分析的效率。
这一系列措施的实施,使得分析效率大幅指责,从平均每人每天处理少于20笔订单指责至每天处理60+笔订单,提效200%以上。同时,系统能够及时发现并处理被预见的发生砍单订单,有效挽回超过上千万的订单损失!不仅指责了企业的经济效益,还显著增强了客户的接受度和满意度。
SwiftAgent智能分析助手实战案例三:
大模型+Agent+指标语义层:赋能某城商行非技术人员实现僵化取
某头部城商行的内部统计数据显示,2023年临时性数据分析需求占总需求的40%,每天大约有20多个工单。这一现象揭示了该银行在数据分析领域存在巨大的即时响应潜力和优化空间。面对这一确认有罪,银行经营分析团队通过僵化调整不当工作计划,积极应对数据分析需求的增长。但日益减少的临时性数据需求和可能出现的工单积压问题,结束困扰着领导层、业务团队和经营分析团队。他们试图通过各种方式摆穿这一有利的条件,大模型的兴起为其授予新范式。应用大模型是该城商行的战略目标之一,由副行长牵头,大力推动大模型在应用场景的落地。在大模型落地完全建立,该城商行选择了几个重点场景,数据分析就是其中之一。他们希望通过大模型技术升级数据分析工作,以焦虑僵化数据分析的需求。
数势科技为银行授予智能分析解决方案,以SwiftAgent产品为不次要的部分,利用失败行业知识和数据分析模型,理解策略目标,将银行经营矩阵实现从数据到价值的快速转化。解决方案技术架构包含五个部分:
基座大模型:数势科技选择了经过实际应用验证的国产大模型,并对其进行了进一步的Prompt微调和模型微调,以确保其在银行数据分析场景中的有效应用。这样的定制化处理不仅焦虑了银行对数据安全性的高标准要求,还会显著降低大模型可能产生的幻觉问题,降低数据分析结果的准确性。
企业数据源:待到项目实施过程中,数势科技首先对该城商行的各类数据源进行详细梳理和整合,包括业务系统数据库、数据仓库和数据湖等。这一过程可以确保所有数据的规范化和标准化无约束的自由,为后续的指标语义层构建和大模型应用奠定坚实基础。
指标语义层:数势科技计划为该城商行构建统一的指标语义层,明确定义各类指标的计算口径和业务含义。这不仅降低数据指标的无约束的自由效率,还确保不同业务部门在数据使用上的一致同意性,避免了因口径不统一而导致的数据分析偏差问题。
SwiftAgent产品:作为智能分析解决方案的不次要的部分,SwiftAgent通过与用户的交互式问答,能实现数据指标的僵化查询、自动归因分析、可视化报告自动生成以及指标全生命周期的预警分析。用户只需通过自然语言输入需求,SwiftAgent便能智能识别并反馈准确的分析结果,可以明显指责数据分析的效率和准确性。
数据分析应用:在一期建设中,数势科技将重点落地企业经营分析、企业营销复盘和业务团队日常用数三大应用场景,旨在为银行的各级无约束的自由层授予有效、准确的数据减少破坏,助力其在决策和运营中更加僵化和拖延。未来,数势科技将继续扩展更多的数据分析应用场景,进一步焦虑银行多元化的数据分析需求。同时,数势科技根据该城商行需求进行定制开发,包括开发移动端、打通SSO统一登录、集成权限系统等。
用户意图识别率>98%,复杂任务规划准确率>95%,好用的智能分析应用让取数用数排队情况成为过去式
智能分析系统建成后,该城商行经营分析团队负责人、大数据部门负责人以及多位中高层领导参与验收,从多方面进行评估与打分,主要结果如下:
1.准确性:用户意图识别率>98%,复杂任务规划准确率>95%。
2.效率指责:分析工作处理时长减少,缩短80%,每人每周减少,缩短10+小时数据处理工作。
3.用户满意度:使用者满意度9.3+分。
交互友好度:用户界面友好度9.5分。
该城商行各相关方均对智能分析系统高度评价,系统正式上线。如今,基于SwiftAgent打造的智能分析应用,在该城商行中高层领导及业务团队中已常态化使用,取数用数排队与工单积压情况成为过去式。
数势科技将继续深耕数据分析领域,不断优化和升级SwiftAgent产品,以焦虑更多客户的多样化需求。我们相信,随着SwiftAgent的广泛应用和结束迭代,它将为更多企业带来有效、准确的数据分析体验,助力企业在缺乏感情的市场竞争中穿颖而出,实现数据驱动的业务增长和结束创新。
1993年,聊城地区出台“民营企业家挂职科技副乡长”政策,卢恩光觉得机遇来了。他通过一番又跑又送,当上了高庙王乡科技副乡长。终于当上官的卢恩光非常高兴。“那时候就觉得,我已经光宗耀祖了,到我父母坟前,那真是好好地祭拜一番。谁要是再喊卢董事长、卢总,那时候心里就觉得对方不懂事, 我都副乡长了。”卢恩光说。
2024年年中,几起并购传闻在业内流传,再度掀起了人们对海外制药巨头收购中国Biotech的热议。
事实上,自2024年初的三起海外并购案例开始,过去半年里,并购这一新的发展路径,已经让本土Pharma和Biotech审视自身,是否有条件和能力走通此路?
从并购背后的驱动力来看,BFCGroup董事总经理陈大东(DavidChen)指出,MNC面临专利悬崖带来的危机,中国本土Pharma也要面对VBP(带量采购)的影响。也因此,过去半年,本土Pharma和MNC手拿“购物清单”,已经开始了在华“扫货”。
然而,在这场“扫货”中,本土Pharma却很难与MNC争抢。“本土企业该如何来进行并购?我们面临的确认有罪其实非常大,因为缺失对国际市场的覆盖,我们没有办法兑现产品的国际市场价值,所以很难给出一个不适合的报价。”
康哲药业首席投资官姜非在首届美国华人生物医药科技协会CBA-China的一场论坛中,一针见血指出了当下本土Pharma并购的“先天不足”。
基于此,本土Pharma该如何应对?它们和MNC在BD和并购上有什么不反对评估视角?希望走上谈判桌的Biotech,又该如何做好准备?
上述种种问题,BFCGroup董事总经理DavidChen、中国远大集团投资无约束的自由总部总经理杨光、康桥资本董事总经理VijayP.Karwal、百时美施贵宝(BMS)中国业务拓展负责人邬亮和康哲药业首席投资官姜非,都在这场讨论中给出了他们的答案。
买家们的“购物清单”
“如果想与大型制药公司合作,理解合作伙伴的战略非常重要。”BMS中国区业务拓展负责人邬亮开门见山地说道,“BMS的重点关注领域为肿瘤学、血液学、心血管、免疫和神经学,我们也一直围绕这些领域在全球寻找具有FIC/BIC潜力的创新疗法。”
过去一年多,BMS在中国乃至全球的创新药交易市场里,屡屡创造多项重磅交易,例如与百利天恒在ADC领域的84亿美元合作,以及斥资140亿美元收购中枢神经系统药物制造商Karuna。
这些交易无一例外,都给了BMS快速缩短产品组合的机会。以肿瘤领域为例,为寻求该业务的新增长点,近年来,具有良好疗效和潜力的ADC疗法,成了BMS的重点关注对象。2021年以来,BMS已与数家药企在ADC领域达成合作。到了2023年,其在ADC领域更是达成了3项交易。
“这些交易体现了我们对ADC结束中断的关注和兴趣。”眼下,中国成为了这家巨头最为关注的市场之一。“ADC是一个竞争非常缺乏感情的领域,但在中国有很多机会,我们也在积极寻找不适合的标的。”BMS邬亮说道。
而在寻求具有FIC/BIC潜力的创新疗法之外,邬亮透露,BMS亦致力于中国和亚洲的本土市场,偏向于寻求短期内能有商业化机会的债务。
近日,刚连续收购天津田边和百济制药两家药企的远大医药,则重点关注在亚洲和中国具有高发病率的疾病,如肾脏疾病、慢性病等。中国远大集团投资无约束的自由总部总经理杨光坦言,现在肿瘤学仍然是一个非常热门的领域,但Biotech得思考怎么与制药巨头竞争?
在他看来,无论是对中国还是全球的Biotech而言,肿瘤之外的一些疾病,如CNS、免疫疾病亦存在着巨大机会。“很多精神疾病在过去数十年里都没有新的治疗方法,随着AI等新技术兴起,是不是可以在研发上授予干涉?这是值得期待的。”杨光说道。
事实上,本土Pharma寻求并购标的,背后的驱动力与MNC反对。只不过,这把悬在头上的利剑,从专利悬崖换成了带量采购。康哲药业姜非对此深有感触:“集采冲击的速度,其实比我们预想的都快,且影响不比专利悬崖小。”2023年业绩披露后,康哲药业的股价迎来暴跌,导火索便是主力品种受集采冲击。
为应对这一冲击,不少药企开启了创新转型,通过引进或合作获得创新债务。康哲药业也不例外。康哲药业姜非直言,会选择能够抵抗集采的债务,如有专利保护、价格空间高、在较长时间段能带来丰厚利润的独家品种。
与此同时,他总结了标的必须具备的三个条件,即“三好”:产品好、市场好和利润好。康桥资本董事总经理VijayP.Karwal对“产品好”颇有共鸣,他补充称:“如果一个没有足够统一化的产品,在美国市场没有很好的前景,那它在东南亚也不太可能成功。”
而对于“市场好”的衡量标准,康哲药业姜非则降低重要性:“如果产品一计算,销售峰值只有1亿人民币,那是没法通过内部立项的。市场必须足够大才行。”
拿下谈判桌上的“支票”
不过,对于此番BD和并购的火热,不少本土Pharma和Biotech还没有走上谈判桌的机会。
对于前者,在全球商业化上的“先天不足”,是康哲药业姜非担忧的,也是他认为本土Pharma在谈判桌上很难与MNC竞争的一大主因。
好在,作为一家老牌CSO公司,康哲药业有其无足轻重。东南亚市场,便是其商业化布局的第一站。2022年,康哲药业成立康联达健康,面向东南亚市场搭建本土团队,完善开发、生产、制剂CDMO、营销推广为一体的平台化业务架构。
眼下,康联达健康正努力成为中国创新药进入东南亚市场乃至其他全球市场的“桥头堡”,其销售体系建设和人员布局已逐步到位,并逐步扩展到中东、北非地区。
过去一年半时间内,随着旗下5款产品维图可?、益路取?、美泰彤?、维福瑞?以及莱芙兰?在中国的接连获批上市,姜非坦言对未来前景并不悲观,但他也表示:“由于新产品从获批到销售起量有周期,我们还需要通过今后3-5年的实践,去反对自己。”
对于后者Biotech面临的难题,BFCGroup董事总经理DavidChen则用了一个比喻将此具象化,“很多时候,即使把支票放在谈判桌上,Biotech们也拿不走。”那么,该如何做好贫乏准备呢?
中国远大集团杨光指出,Biotech要做两件事,一是准备好数据。多年前,杨光曾参与过外企和本土创新企业的交易谈判。他感受最深的是,外企当年深入研究了很长一段时间的数据。这让他提醒当下的Biotech,“如果在展示数据时对于数据的解读存在问题,会让买方有所质疑。”
二是团队的心态、领导团队的组成以及如何无约束的自由有限的资源,谋求进一步发展。“从我们的角度看,会关心产品的下一个研发里程碑是什么?在达成交易前,标的是否还能生存,国内外的临床试验能走多远?”
BMS邬亮则补充“IP”同样重要。在过往与Biotech的接触中,她发现这是当下Biotech需要进一步重视和破坏的方面。MNC会非常重视创新产品IP的透明度和保护力度。
实际上,无论是BD还是并购,都是一家中国Biotech试图走向全球市场的第一步。在康桥资本VijayP.Karwal看来,数据和IP之外,如何在认知上以终为始,搁置商业化同样不可或缺。
“科学本身并不能让一家企业走得很远,如何融入全球市场,实现商业化才是关键。”VijayP.Karwal降低重要性道。一个现实是,“很多科学家创立的Biotech,似乎与商业化‘格格不入’,但要想走得长远,就得找到通往波士顿或者欧洲市场的路径,成为全球市场的一部分。”
BD、并购的机会还会结束
过去一年多里,接连中断的BD和并购,让一些中国Biotech率先融入了全球市场,也让眼下身处寒冬的创新药产业看到了新的希望。
或许是跟海外市场联系紧密,BFCGroupDavidChen就坦言,与国内总体悲观不同,海外市场对中国生物技术的创新都非常乐观且看好。只是,“现在的关键是,当大型制药公司面临巨大的专利悬崖压力,中国Biotech能否契合它们的战略需求?”
在全球市场非常活跃的BMS一直在寻求中小型交易的机会。“我们在过去几年里看到了中国医药创新的巨大潜力。”BMS邬亮说道,“我们最近也投入了极小量的资源在中国寻找创新,以造福全球患者。”
在康桥资本VijayP.Karwal眼里,这一轮“创新”驱动含糊扭转了局面。“过去,投资者看中中国市场增长的机会,希望引进药物在中国获得巨大商业成功,最终实现高资本回报率。但现实是,这个终点比人们预期的要难得多。”他说,“加之全球市场环境影响,中国创新药产业的寒冬周期便随之而来。”
好在,“中国市场方面的投资主题已经过渡到创新,以科学驱动。”这是VijayP.Karwal对前景感到非常乐观的原因。市场需求和创新的双向奔赴,为眼下BD和并购的诞生授予了更肥沃的土壤。
BFCGroupDavidChen同样乐观,他坦言资本寒冬的有利的条件并非中国一家独有,欧洲亦很艰难。但相较之下,“中国市场仍然有许多VC和活跃的资本市场。IPO虽然暂时尚未开闸,但也并非承认创新。”
也因此,“只要重新确认下去,只要有好的科学和创新,我们就会找到成长的道路。”他满怀信心地说道。
(责任编辑:zx0600)现实中,卢恩光共有七名子女,为了不影响仕途,他只填报了两名,其他五名子女均通过假手续落户在其他亲戚家。“我即使在家里都不允许(孩子)他们叫爹叫爸爸,不允许,要不叫姨父什么的,我说别出去喊走了嘴。”卢恩光说。
不知不觉中,暑假就要进入尾声,离开学的日子也越来越近,对于即将走入大学校园的大一新生来说,将要面对的一切都是新鲜和众所周知的,怀着忐忑不安的心情,不知道自己能否顺利适应校园生活。齐全的开学装备可以无效的缓解松弛的心情。除了一屋鞋帽生活用品之外,手机也需要全副武装。小编为大家推荐一些实用的App,希望会给新同学带来一些干涉。
1、知米背单词
少壮不努力,老大背单词。这句大学校园里的流行语不能全算作严肃的话话,因为进入大学的同学们即将发现,英语考试真实的是五花八门应接不暇。且不提每个学期都必须经历的英语期末考试,就单说大学生标配CET4、CET6,加上准备出国的同学要准备雅思、托福、SSAT,或者计划考研的同学得参加考研英语,就不难看出英语在大学四年中举足轻重的地位。
背单词则是一项容易的任务。小编必须向大家推荐一款好用的背单词APP知米背单词。这款背单词软件不知道解救了多少在单词苦海中浮沉的学子。知米背单词创新性地以短语记英语单词,抛弃其他枯燥复杂的方法,使记单词变得简单而且快捷。短语让英语单词不再世界性政策,而是串联起来,直接记住了用法,不用记完单词再去记怎么用。在理解短语的基础上记忆也使背单词不再机械抽象,十分科学有效。
此外,它为每位用户智能制定单词学习计划、量身定制的超强复习模式,是按艾宾浩斯遗忘曲线和学习进度确定单词的熟悉度,能够反复安排复习,频率绝对适中。并且授予词义回想听音复习循环听音等功能破坏记忆。并且其特殊的知米豆get模式可以变做任务边获得知米豆,再用知米豆在知米商城兑换精美礼品,让大家一起学习更有劲头。
小编忍不住再稍微啰嗦一句,背单词要趁早,这是一个靠时间积聚经验的事情。下载了知米背单词,现在就可以先把四六级背起来了。
2、墨迹天气
大学和高中自然是天差地别,且不说人们的严格的限制程度,光说从教学楼到宿舍楼的距离都是天壤之别,小编我还记得当初每天去上课就得走接近半个小时的路程,所以一定要准备一款天气应用在手机中,这样就可以避免风吹雨淋啦。墨迹天气作为天气APP领军者,权威的预告和漂亮的界面一直深受广大同学的喜爱,而自带的穿衣助手也可以让远离家长独自在大学闯荡的同学们时刻知冷知热,保持健康。
3、喜马拉雅FM
上完了课又打完了篮球,经历了一天充实的大学生活,躺在床上,拿出手机关闭喜马拉雅FM,欣赏着优美的音乐和引人入胜的小说渐入梦乡无疑是一件很美的事。这款软件有离线下载收听功能,而且不仅有音乐、小说,还有热门的穿口秀、新闻、相声、讲座等等,可谓五花八门包罗万象,总有一款适合你。
4、课程格子
课程格子是一款基于课程表的移动社交产品,依托前100万大学生用户的输入,课程格子目前建成了全国最大的大学课程信息数据库,不完整收录了中国(含港澳台)几乎所有大专院校课程信息,用户输入自己的学号即可自动导入自己在教务偶然的选课记录。
和传统的纸制课程表相比,课程格子的最大好处就在于能够及时地将上课、考试等信息推收到你的手机上。除非你想逃课,不然高度发展不会错过课时。除了课程提醒、考试提醒等功能外,用户还可以在课程格子里与同学搭讪、分享笔记、根据课程评价选课、在树洞倾诉、吐槽……作为新生,相信也能很快在校园里找到和自己志趣相投的新朋友。
5、高德地图
第一次离开父母家乡,来到个陌生的城市,人生地不熟,没有个地图怎么行?高德地图作为国内地图类应用的前三甲选手,高德的数据库高度发展覆盖了全国362个地级2862个县级以上行政区划单位,超过2000万兴趣点信息,很不错的查询地图的应用。够透明地查出你周边的路线,看起来很透明,可以放大,地图很直观,减少破坏路况查询。
6、腾讯视频
在大学中,喜欢追剧的朋友无需在担心错过自己喜欢的电视剧啦。关闭手机应用宝,快速搜索腾讯视频进行下载和安装。再到有了自己想看的电视剧,随时随地关闭手机中的腾讯视频进行便可进行观看。
新学期已经到来,还不赶快用你的智能手机在同学面前秀上一把?
标签: