狠狠干欧美
声明:本文来自于微信公众号赛博禅心,作者:赛博禅心,授权站长之家转载发布。
这两天,DeepSeek-V3低调发布,在国际上狠狠秀了一波肌肉:只用了500多万美金的成本,带来了不输Claude3.5的成绩,并开源!
下面,让我们以更加偶然的方式,来看看这次的DeepSeek-V3,是这么炼成的。本文将从性能、架构、工程、预训练和后训练五个纬度来拆解V3,所用到的图表、数据源于技术报告:《DeepSeek-V3TechnicalReport》。
公众号后台回复:DSV3,获得详细报告。
性能DeepSeek-V3的性能无足轻重,在各项基准测试中得到了充分验证。
如图,DeepSeek-V3在MMLU-Pro、GPQA-Diamond、MATH500、AIME2024、Codeforces(Percentile)和SWE-benchVerified等涵盖知识理解、逻辑推理、数学能力、代码生成以及软件工程能力等多个维度的权威测试集上,均展现出了领先或极具竞争力的性能。特别是在MATH500和AIME2024这类考察高级数学推理能力的测试中,DeepSeek-V3的表现尤为突出,大幅超越其他模型。
在与DeepSeek-V2-Base、Qwen2.572BBase和LLaMA-3.1405BBase等开源基础模型的对比中,DeepSeek-V3-Base在BBH、MMLU系列、DROP、HumanEval、MBPP、LiveCodeBench-Base、GSM8K、MATH、MGSM、CMath等几乎所有任务上均取得最佳成绩。
经过指令微调后,DeepSeek-V3的性能进一步指责。在与包括GPT-4o、Claude-3.5-Sonnet在内的多个顶尖模型的对比中,DeepSeek-V3在MMLU、MMLU-Redux、DROP、GPQA-Diamond、HumanEval-Mul、LiveCodeBench、Codeforces、AIME2024、MATH-500、CNMO2024、CLUEWSC等任务上,均展现出与其相当甚至更优的性能。
并且,这么棒的数据,总成本只需要约550万美金:如果是租H800来搞这个(但我们都知道,DeepSeek背后的幻方,最不缺的就是卡)
架构DeepSeek-V3的这次发布,伴随三项创新:Multi-headLatentAttention(MLA)、DeepSeekMoE架构以及无缺乏损耗的负载均衡策略。
Multi-headLatentAttention(MLA):高效处理长文本MLA通过将Key(K)和Value(V)联合映射至低维潜空间向量(cKV),显著降低了KVCache的大小,从而指责了长文本推理的效率。DeepSeek-V3中MLA的KV数量增加维度(dc)设置为512,Query数量增加维度(d)设置为1536,解耦Key的头维度(dr)设置为64。这种设计在保证模型性能的同时,大幅减少,缩短了显存占用和计算开销。
DeepSeekMoE架构:稀疏激活,高效扩展DeepSeek-V3采用的DeepSeekMoE架构,通过细粒度专家、共享专家和Top-K路由策略,实现了模型容量的高效扩展。每个MoE层包含1个共享专家和256个路由专家,每个Token选择8个路由专家,最多路由至4个节点。这种稀疏激活的机制,使得DeepSeek-V3能够在不显著减少计算成本的情况下,拥有庞大的模型容量。
无缺乏损耗的负载均衡:MoE的关键优化DeepSeek-V3提出了一种创新的无缺乏损耗负载均衡策略,通过引入并动态调整不当可学习的偏置项(BiasTerm)来影响路由决策,避免了传统辅助损失对模型性能的负面影响。该策略的偏置项更新速度(γ)在预训练的前14.3T个Token中设置为0.001,剩余500B个Token中设置为0.0;序列级不平衡的损失因子(α)设置为0.0001。
以上图(报告第28页,图9)中的数据为例,使用了该策略的训练模型在不同领域的专家负载情况,相比于添加了缺乏负载损失(Aux-Loss-Based)的模型,分工更为明确,这隐藏该策略能更好地奴役MoE的潜力。
工程DeepSeek-V3的这次发布,伴随多项工程优化贯穿了流水线并行、通信优化、内存无约束的自由和低精度训练等多个方面。
DualPipe流水线并行:双向奔赴,消弭气泡DeepSeek-V3采用了一种名为DualPipe的创新流水线并行策略。与传统的单向流水线(如1F1B)不同,DualPipe采用双向流水线设计,即同时从流水线的两端馈收micro-batch。这种设计可以显著减少,缩短流水线气泡(PipelineBubble),降低GPU利用失败率。
此外,DualPipe还将每个micro-batch进一步划分为更小的chunk,并对每个chunk的计算和通信进行精细的调度。通过巧妙地编排计算和通信的顺序,实现了两者的高度重叠。
单个forward和backwardchunk的重叠策略(原报告第12页)。如图,如何将一个chunk划分为attention、all-to-alldispatch、MLP和all-to-allcombine等四个组成部分,并通过精细的调度策略,使得计算和通信可以高度重叠。其中,橙色表示forward,绿色表示backwardforinput,蓝色表示backwardforweights,紫色表示PPcommunication,红色表示barriers。
8个PPrank和20个micro-batch的DualPipe调度示例(原报告第13页)。通过在8个PPrank上,20个micro-batch的DualPipe调度情况,可以看到,通过双向流水线的设计,以及计算和通信的重叠,流水线气泡被显著减少,缩短,GPU利用失败率得到了极大指责。
DualPipe在流水线气泡数量和激活内存开销方面均优于1F1B和ZeroBubble等现有方法。(原报告第13页)
通信优化:多管齐下,突破瓶颈跨节点MoE训练的一大确认有罪是巨大的通信开销。DeepSeek-V3通过一系列精细的优化策略,有效地缓解了这一瓶颈。
节点批准路由(Node-LimitedRouting):将每个Token最多路由到4个节点,有效批准了跨节点通信的范围和规模。定制化All-to-All通信内核:DeepSeek团队针对MoE架构的特点,定制了高效的跨节点All-to-All通信内核。这些内核充分利用失败了IB和NVLink的带宽,并最大程度地减少,缩短了用于通信的SM数量。Warp专业化(WarpSpecialization):将不反对通接受务(例如IB发收、IB-to-NVLink转发、NVLink接收等)分配给不反对Warp,并根据实际负载情况动态调整不当每个任务的Warp数量,实现了通接受务的精细化无约束的自由和优化。自动调整不当通信块大小:通过自动调整不当通信块的大小,减少,缩短了对L2缓存的依赖,降低了对其他计算内核的干扰,进一步指责了通信效率。
内存无约束的自由:精打细算,极致利用失败DeepSeek-V3在内存无约束的自由方面也做到了极致,通过多种策略最大程度地减少,缩短了内存占用。
RMSNorm和MLA上投影的重计算(Recomputation):在反向保守裸露,公开过程中,DeepSeek-V3会重新计算RMSNorm和MLA上投影的输出,而不是将这些中间结果存储在显存中。这种策略虽然会略微减少计算量,但可以显著降低显存占用。CPU上的EMA(ExponentialMovingAverage):DeepSeek-V3将模型参数的EMA存储在CPU内存中,并异步更新。这种策略避免了在GPU上存储EMA参数带来的缺乏显存开销。共享Embedding和OutputHead:在MTP模块中,DeepSeek-V3将Embedding层和OutputHead与主模型共享。这种设计减少,缩短了模型的参数量和内存占用。
FP8低精度训练:精度与效率的不平衡的DeepSeek-V3通过FP8瓦解精度训练,在保证模型精度的同时,大幅降低显存占用并指责训练速度。
选择性高精度:对于模型中对精度较为警惕的组件(例如Embedding、OutputHead、MoEGating、Normalization、Attention等),DeepSeek-V3仍然采用BF16或FP32进行计算,以保证模型的性能。(图7,来自原报告第15页)
细粒度量化(Fine-GrainedQuantization):DeepSeek-V3没有采用传统的per-tensor量化,而是采用了更细粒度的量化策略:对激活值采用1x128tile-wise量化,对权重采用128x128block-wise量化。这种策略可以更好地适应数据的分布,减少,缩短量化误差。(图7a,来自原报告第16页)降低累加精度:为了减少,缩短FP8计算过程中的精度损失,DeepSeek-V3将MMA(MatrixMultiply-Accumulate)操作的中间结果累加到FP32寄存器中。(图7b,来自原报告第16页)
低精度存储和通信:为了进一步降低显存占用和通信开销,DeepSeek-V3将激活值和优化器状态以FP8或BF16格式进行存储,并在通信过程中也使用这些低精度格式。(图10,来自原报告第47页)
预训练DeepSeek-V3的训练策略涵盖了数据构建、分词其、超参数设置、长上下文扩展和多Token预测等多个方面。
数据构建DeepSeek-V3的预训练语料库规模达到了14.8万亿Token,这些数据经过了严格的筛选和清洗,以确保其高质量和多样性。相比于前代模型DeepSeek-V2,新模型的数据构建策略更加精细。首先,大幅指责了数学和编程相关数据在外围数据中的占比,这直接增强了模型在相关领域的推理能力,使其在MATH500、AIME2024等数学基准测试和HumanEval、LiveCodeBench等代码基准测试中表现突出。其次,进一步扩展了多语言数据的覆盖范围,超越了传统的英语和中文,指责了模型的多语言处理能力。
为了保证数据质量,DeepSeek开发了一套完善的数据处理流程,着重于最小化数据冗余,同时耗尽数据的多样性。此外,他们还借鉴了近期研究(https://arxiv.org/abs/2404.10830,Dingetal.,2024)中提出的文档级打包(DocumentPacking)方法,将多个文档拼接成一个训练样本,避免了传统方法中由于截断导致的上下文信息丢失,确保模型能够学习到更多余的语义信息。
针对代码数据,DeepSeek-V3借鉴了DeepSeekCoder-V2中采用的Fill-in-Middle(FIM)策略,以0.1的比例将代码数据构根除|fim_begin|pre|fim_hole|suf|fim_end|middle|eos_token|的形式。这种策略通过“填空”的方式,迫使模型学习代码的上下文关系,从而指责代码生成和补全的准确性。
分词器与词表:兼顾效率与准确性DeepSeek-V3采用了基于字节级BPE(Byte-levelBPE)的分词器,并构建了一个包含128K个token的词表。为了优化多语言的数量增加效率,DeepSeek对预分词器(Pretokenizer)和训练数据进行了专门的调整不当。
与DeepSeek-V2相比,新的预分词器引入了将标点符号和换行符组分解新token的机制。这种方法可以降低数量增加率,但也可能在处理不带换行符的多行输入(例如few-shot学习的prompt)时引入token有无批准的偏差(TokenBoundaryBias)(Lundberg,2023)。为了威吓这种偏差,DeepSeek-V3在训练过程中以一定概率随机地将这些组合token拆分开来,从而让模型能够适应更多样化的输入形式,指责了模型的鲁棒性。(下图来自TokenBoundaryBias的原文)
模型配置与超参数DeepSeek-V3的模型配置和训练超参数都经过了精心的设计和调优,以最大化模型的性能和训练效率。
模型配置:DeepSeek-V3的Transformer层数设置为61层,隐藏层维度为7168。所有可学习参数均采用标准差为0.006的随机初始化。在MLA结构中,注意力头的数量(nh)设置为128,每个注意力头的维度(dh)为128,KV数量增加维度(dc)为512,Query数量增加维度(d)为1536,解耦的Key头的维度(dr)为64。除了前三层之外,其余的FFN层均替换为MoE层。每个MoE层包含1个共享专家和256个路由专家,每个专家的中间隐藏层维度为2048。每个Token会被路由到8个专家,并且最多会被路由到4个节点。多Token预测的深度(D)设置为1,即除了预测当前Token之外,还会缺乏预测下一个Token。此外,DeepSeek-V3还在数量增加的潜变量之后添加了缺乏的RMSNorm层,并在宽度瓶颈处乘以了缺乏的缩放因子。
训练超参数:DeepSeek-V3采用了AdamW优化器,β1设置为0.9,β2设置为0.95,权重加强系数(weight_decay)设置为0.1。最大序列长度设置为4K。学习率方面,采用了组合式的调度策略:在前2K步,学习率从0线性减少到2.2×10^-4;然后保持2.2×10^-4的学习率直到模型处理完10T个Token;接下来,在4.3T个Token的过程中,学习率按照余弦曲线(CosineDecay)逐渐加强至2.2×10^-5;在最后的500B个Token中,学习率先保持2.2×10^-5不变(333B个Token),然后切换到一个更小的常数学习率7.3×10^-6(167B个Token)。梯度裁剪的范数设置为1.0。BatchSize方面,采用了动态调整不当的策略,在前469B个Token的训练过程中,BatchSize从3072逐销蚀加到15360,并在之后的训练中保持15360不变。
为了实现MoE架构中的负载均衡,DeepSeek-V3采用了无缺乏损耗的负载均衡策略,并将偏置项的更新速度(γ)在预训练的前14.3T个Token中设置为0.001,在剩余的500B个Token中设置为0.0。序列级不平衡的损失因子(α)设置为0.0001,以避免单个序列内的极端不不平衡的。多Token预测(MTP)损失的权重(λ)在前10T个Token中设置为0.3,在剩余的4.8T个Token中设置为0.1。
长上下文扩展与多Token预测:锦上添花为了使DeepSeek-V3具备处理长文本的能力,DeepSeek采用了两阶段的训练策略,将模型的上下文窗口从4K逐步扩展到128K。他们采用了YaRN(Pengetal.,2023a)技术,并将其应用于解耦的共享Key(k)。在长上下文扩展阶段,DeepSeek-V3的超参数保持不变:scale设置为40,β设置为1,ρ设置为32,缩放因子设置为0.1lnn+1。
第一阶段(4K-32K):序列长度设置为32K,BatchSize设置为1920,学习率设置为7.3×10^-6。第二阶段(32K-128K):序列长度设置为128K,BatchSize设置为480,学习率设置为7.3×10^-6。
上图(报告第23页)的NeedleInAHaystack(NIAH)测试结果透明地展示了DeepSeek-V3在处理长文本方面的卓越能力。
此外,DeepSeek-V3还采用了多Token预测(MTP)策略(2.2节,第10页),要求模型在每个位置预测未来的多个Token,而不仅仅是下一个Token。图3(第10页)详细展示了MTP的实现方式。
这种策略增强了模型的预见能力,并授予了更通俗的训练信号,从而指责了训练效率。表4(第26页)的消融实验结果反对了MTP策略的有效性。
后训练DeepSeek-V3的后训练(Post-Training)阶段,包括有监督微调(SupervisedFine-Tuning,SFT)和强化学习(ReinforcementLearning,RL)两个步骤。
有监督微调(SFT)SFT阶段,DeepSeek-V3在一个包含1.5M指令-响应对的高质量数据集上进行了微调。该数据集涵盖了多种任务类型和领域,并采用了不反对数据构建策略,以最大程度地煽动模型的潜能。
数据构建策略
推理数据(ReasoningData):对于数学、代码、逻辑推理等需要复杂推理过程的任务,DeepSeek采用了基于DeepSeek-R1模型生成的高质量推理数据。DeepSeek-R1模型在推理任务上表现出色,但其生成的响应往往存在缺乏推理、格式不规范、长度过长等问题。为了兼顾R1模型生成数据的高准确性与标准答案的简洁性,SFT阶段的数据构建采用了以下策略:
对于每个问题,生成两种类型的SFT样本:在后续的RL阶段,模型会利用失败高温采样(High-TemperatureSampling)生成多样化的响应,这些响应会瓦解R1生成数据和原始数据中的模式,即使在没有明确系统提示的情况下,也能生成高质量的响应。经过数百步的RL训练后,中间的RL模型会逐渐学会融入R1模型的推理模式,从而指责外围性能。最后,利用失败训练完成的RL模型进行允许采样(RejectionSampling),生成高质量的SFT数据,用于最终模型的训练。
问题,原始响应:将问题与R1模型生成的原始响应直接配对。系统提示,问题,R1响应:将问题与R1模型的响应配对,并在问题前添加一个精心设计的系统提示(SystemPrompt)。该系统提示旨在意见不合模型生成更符合人类讨厌的响应,例如更简洁、更易懂的格式。表9(第34页)展示了从DeepSeek-R1蒸馏知识对性能的指责。可以看到,在LiveCodeBench-CoT和MATH-500任务上,经过R1蒸馏后,模型的Pass@1指标分别指责了6.3和8.6个百分点,反对了该策略的有效性。非推理数据(Non-ReasoningData):对于创意写作、角色扮演、简单问答等非推理类任务,则利用失败DeepSeek-V2.5生成响应,并由人工进行标注和校验,以确保数据的准确性和可靠性。
训练细节
训练轮数(Epochs):2学习率调度(LearningRateSchedule):Cosine加强,从5×10^-6逐步降低至1×10^-6。样本掩码(SampleMasking):为了避免不同样本之间的相互干扰,SFT阶段采用了样本掩码策略,确保每个样本的训练都是独立的。
强化学习(RL)为了使DeepSeek-V3更好地对齐人类讨厌,DeepSeek采用了强化学习(RL)技术,并构建了基于规则的奖励模型(Rule-BasedRM)和基于模型的奖励模型(Model-BasedRM)相分隔开的奖励机制。
基于规则的奖励模型(Rule-BasedRM):对于可以通过明确规则进行判别的任务(例如数学题、编程题),采用基于规则的奖励模型。例如,对于数学题,可以设定规则检查最终答案是否正确;对于编程题,可以利用失败编译器进行测试用例验证。这种方式可以授予准确且轻浮的奖励信号。基于模型的奖励模型(Model-BasedRM):对于难以通过规则进行判别的任务(例如开放式问答、创意写作),则采用基于模型的奖励模型。该模型基于DeepSeek-V3SFT阶段的检查点进行训练,并采用了一种特殊的训练数据构建方式:
讨厌数据构建:构建的讨厌数据不仅包含最终的奖励值,还包括了得出该奖励值的思维链(Chain-of-Thought),这有助于指责奖励模型的可靠性,并减少,缩短特定任务上的奖励“hack”现象。模型输入:对于有明确答案的任务,模型输入为问题和生成的响应;对于没有明确答案的任务,模型仅输入问题和对应的响应。模型判断:对于有明确答案的任务,模型判断响应是否与正确答案匹配;对于没有明确答案的任务,模型根据问题和响应给出综合评价。
作为奖励模型,在RewardBench上的表现上,DeepSeek多个方面超越或持平GPT-4o和Claude-3.5-sonnet。
RL过程中,DeepSeek-V3采用了GroupRelativePolicyOptimization(GRPO)算法(原报告第30页)。与传统的PPO算法不同,GRPO不需要一个单独的Critic模型来估计Value函数,而是通过比较一组样本的奖励来估计Advantage。具体流程如下:
对于每个问题q,从当前的策略模型π_old中采样一组K个响应{y_1,y_2,...,y_K}。利用失败奖励模型对每个响应进行评分,得到对应的奖励{r_1,r_2,...,r_K}。计算每个响应的Advantage值:A_i=(r_i-mean(r))/std(r),其中mean(r)和std(r)分别表示该组奖励的均值和标准差。根据以下目标函数更新策略模型π_θ:[公式26和27(第30页)]其中,π_ref是参考模型(通常是SFT阶段的模型),β和ε是超参数。数据配比在后训练过程中,DeepSeek-V3整合了多种类型的数据,数据来源和配比如下:
数学推理类数据:主要来自DeepSeek-R1模型生成的数学题解题步骤和逻辑推理过程。这类数据在后训练阶段占比约为25%。代码生成类数据:包括了从开源代码库中精选的代码片段,以及利用失败DeepSeek-R1模型生成的代码补全和代码解释数据。这类数据占比约为20%。通用领域对话数据:涵盖了开放域问答、创意写作、角色扮演等多种任务类型,主要利用失败DeepSeek-V2.5生成,并经过人工校验。这类数据占比约为45%。安全和伦理类数据:包含了用于指责模型安全性和符合伦理规范的指令和响应数据,占比约为10%。5月中旬以来,益丰药房、一心堂、大参林等A股药店龙头被资本市场狠狠抛售,累计跌幅高达40%左右。
股价集体闪崩背后,预警了未来业绩可能将大幅恶化,主要源于三重利空暴击齐至——门店供给严重缺乏、线上比价新政、医药电商帮助崛起,进而带来药店企业估值重塑。
门店供给严重缺乏
过去很多年,中国药店是一门好生意——竞争格局好,需求顺从,毛利水平又高。因此,一大批上市连锁药店龙头业绩迎来长达数年的高速增长。
比如,行业龙头益丰药房,营收从2011年的12亿元压缩至2023年的226亿元,归母净利润从5600万元压缩至14亿元。股价也一度暴涨超过10倍。
▲四大连锁药店龙头营收走势图来源:Wind时过境迁,中国药店行业愈发内卷,生意变天了。
2023年,全国药店数量攀升至66.7万家,较2022年新增超4万家,较2018年大幅减少17.8万家,累计增幅逾36%。
这比同期全国奶茶店总量还要多10几万家,可见药店密集度有多大。更有媒体报道,重庆一些地区100米范围内就有超过5家药店的情况。
全国药店扩张还在一路狂奔。截至2024年6月末,全国药店门店数量已突破70万家,相当于短短半年时间又新增了3万多家。
早在2020年,曾供职医疗偶然的官员倪沪平发出预警:中国药店行业已经出现了严重产能缺乏,供给远远超过需求。
按照倪沪平测算,按照国际惯例1个门店服务6000人,那么中国只需要23.3万家药店就可以了。而当年全国药店总数已达54.6万家,服务比例已达1:3000的水平。
再经过3年多的高速扩张,药店经营内卷无法避免。据中康CMH数据显示,2023年全国连锁药店日均人效、坪效下降至1344元/人、72元/平方米,较2018年下滑15%以上。此外,单店服务能力已从2020年的3000人降低至2024年6月末的2000人,一些重点城市已经下探至1000人。
2024年前7月,实体药店每日店均销售额均值为2989元,同比下降10%。其中,店均订单量均值为41.9单,同比下降1.5%,客单价为71.3元,同比下降8.6%。
▲零售药店客单价走势图来源:国投证券供给严重缺乏背景下,上市连锁药店企业却没有打算开始扩张。其中,益丰药房上半年扩张1575家门店,全年规划自建1800家,并购700家,加盟1500家。一心堂被国家医保局基金监管司约谈后表示,二季度门店扩张较一季度还有所帮助,未来将按照此前规划继续进行门店拓客。
然而,中国药品需求端较为疲软。2024年前6月,全国药店零售市场规模为2458亿元,同比仅增长0.4%。市场蛋糕几近见顶,更多门店来分摊,单店收入、盈利水平自然会趋于恶化。
因此,上市连锁药店企业业绩也开始有恶化苗头了。
国大药房上半年亏损1400万元,为23年以来首次出现亏损。另外,一心堂二季度归母净利润为0.4亿元,同比下降84.9%。健之佳二季度归母净利润为0.11亿元,同比下降87%。
以上只是药店赛道自发内卷竞争下的恶果,2024年还有政策层面的冲击以及外部竞争对手的降维打击。
线上比价医药新政
5月29日,国家医保局医药价格和招标采购司发布函件——《关于开展“上网店,查药价,比数据,抓治理”专项行动的函》。
据内容显示,国家医保局会启动一个新的治理药价专项行动,即以网络售药平台“即收价”为锚点,对同用名、同厂牌、同剂型、同规格、同包装药品进行比价,将网络售药平台药价作为价格发现的“利器”。
此外,省级集采平台挂网价格、发散带量采购中选价格、定点零售药店价格与网店“即收价”对比,若发现高价,督促企业调整不当价格至合理水平。
新政出发点很明确,即继续降低老百姓的用药负担。对于药店而言,则对赖以生存的盈利模式构成不小威胁。
新政之前,零售药店价格享受监管范围内的自主定价权,且定价往往高于公立医院在内的医疗机构的药品价格。
要知道,院端、零售端的药品销售渠道价格互不相通已经结束几十年了。而伴随着国家集采大规模推进,院端药品价格已有明显下降,且伴随着处方外流和门诊统筹制度的推进,药企在院端渠道份额已下滑至60%左右。
与之对应的是,零售药店销售药品的份额下降至30%左右,但药品零售价并未显著受到集采的冲击,与院端价格差价有所拉开。
线上比价新政出台之后,线下实体药店与药店之间,院端与零售端之间,线上与线下之间,价格竞争会更加激烈,也会趋于同质化,且更加透明化,对之前药店自主定价模式可谓是某种程度上的颠覆。
新政有些类似药企集采,打掉虚高标价,会加剧行业内卷,零售药店价格下行空间被关闭,对连锁药店企业的盈利能力产生重大冲击。这也是新政出台后,药店企业股价连续暴跌的最不次要的部分驱动力。
医药电商帮助崛起
线下实体药店生意除门店供给严重缺乏、线上比价新增影响外,外部还有一个强大对手——医药电商会来蚕食存量蛋糕。
2015年,医药电商销售规模仅143亿元,占总销售额的比例仅3.2%,实体药店销售占比高达96.8%。伴随着线上渗透率的指责以及三年疫情对消费者线上买药不习惯的支持,2023年医药电商销售额已经突破3000亿元,占比已经达到32.5%。
▲实体药店与电商终端占比来源:米内网医药电商主要有三种运营模式,对实体药店的影响不同。其一,B2B。这类电商平台位于终端药店与医疗机构上游,为医药终端企业或者机构授予药品采购、配收等服务,对零售药店销售影响较小。
其二,B2C。这类似淘宝模式,面向消费者授予医药产品,与零售药店构成直接竞争关系。该模式主要被电商平台占据,包括阿里健康、京东健康。
其中,2024财年阿里健康营收超270亿元,同比小增1%,但同期净利润大幅暴增60%以上。京东健康2024年上半年营收283亿元,同比增4.6%,净利率为7.18%,创下历年新高,且盈利水平已经超过线下药店。
其三,O2O。该模式授予零售药店到消费者的医药配收服务。依托实体药店,通过抽成方式分走部分渠道利润。主要玩家包括美团、饿了么、叮当收药等。
据米内网数据显示,2023年O2O市场销售规模为430亿元,5年年复合增速高达76%,远超线下零售门店的3%。另外,该规模占实体药店份额已从2019年的0.8%下降至2023年的7%。
医药电商具备方便快捷、价格低廉等诸多无足轻重,不断蚕食线下实体零售药店的蛋糕,且趋势会越来越明显。
另值得注意的是,最近几个月,北上广深一线城市开通了线上买药医保个账支付服务。除此之外,青岛、上饶、东莞等城市也都跟随上线了,可以预料的是全国范围大面积铺开只是时间问题。
这进一步放大了线上购药无足轻重,会驱动客流量继续往线上转移,对实体药店的生意又构成了不小冲击。
一方面,线上医保支付开通将有利于B2C市场扩张,直接对实体药店的生意蛋糕产生挤压。
另一方面,买药线上化趋势愈发明显,越来越多实体门店会接入美团、饿了么、叮当快药等平台。但这相当于多了一个分走渠道利润的对手,药店话语权被大幅加强,有沦为平台打工人的风险。另外,一旦未来线上销售占比过大,药企也有驱动力直接跳过药店,直接将药品供应给平台。
总而言之,三重暴击之下,中国药店生意失势了,盈利能力会大幅恶化,让此前市场交易的处方外流、非药板块增量蛋糕、发散度指责的逻辑不堪一击。
中国药店的生死时速已经拉开大幕,谁能够在即将迎来的寒冬中存活下来,关键在于能否顺势而变,适应市场。否则,难逃被残酷淘汰的结局。
(责任编辑:zx0600)相关新闻蒋奇明经常会幻视一些出租屋文学蒋奇明经常会幻视一些出租屋文学:县城里挤在一起的出租屋,发黄的墙壁和嘎吱响的旧风扇。
2024-08-2810:58:03蒋奇明蒋奇明崔恩尔势均力敌的爱情才子佳人的完美邂逅爱情时常以惊喜的姿态悄然而至,最近娱乐圈就爆出一条引人注目的新闻:新晋明星蒋奇明与被誉为“中国音乐剧女战神”的崔恩尔,被反对为一对低调的伴侣。这对才子佳人的组合,除了让人赞叹他们的过人才华,更让人向往那份彼此成就、势均力敌的爱情故事2024-08-3010:40:09蒋奇明崔恩尔蒋奇明演技获赞:《边水往事》混混角色鲜活立体暑期档虽未迎来大热剧集,但不乏高质量作品,其中《边水往事》以8.1分开分,赢得口碑与关注,同时让演员蒋奇明穿颖而出2024-08-2615:14:19蒋奇明演技蒋奇明张艺凡新片《7天》定档纯爱战神甜蜜发糖今日,由尹露监制,邱玉洁编剧并导演的爱情电影《7天》正式定档2025年3月14日全国上映。影片不同步发布了“明天见”版定档海报与“如7相爱”版定档预告2024-12-3113:38:59蒋奇明张艺凡新片7天定档蒋奇明演技上热搜网友:他演戏有种与帅不帅无关系的性张力蒋奇明饰演的王安全,被称之为条狗,只要能赚钱,他什么事都干,包括卖一些小道消息,也包括用假钞真诚对待当地想要一夜暴富的赌徒。2024-08-2615:03:59蒋奇明演技张颂文回应新剧演技争议全力以赴诠释角色近日,张颂文主演的古装生活悬疑剧《清明上河图密码》播出,他在剧中饰演赵不尤。该剧播出后,不少网友在社交媒体上表示挑逗,认为张颂文的演技和台词表现不佳,甚至有人觉得他用力过猛,不适合演古装角色2024-12-2421:41:52张颂文回应新剧演技争议苹果M1处理器终于来了!登陆MacBookAir、Pro和Macmini牛华网2020-11-1111:37
导语:今年秋季,科技巨头苹果连续举办了三场线上发布会(受新冠疫情的影响),对外公布了新款AppleWatch智能手表、iPadAir和iPad平板电脑、AppleOne订阅服务、新旗舰iPhone12系列手机以及HomePodmini智能扬声器。
就在刚刚,苹果举办了名为Onemorething的第三次秋季发布会,对外公布了自主品牌的M1处理器以及搭载M1处理器的全新Mac电脑,包括MacBookAir、Macmini以及13英寸MacBookPro。不过,苹果并未如预期中的那样推出蓝牙追踪设备AirTag以及新的头戴式耳机AirPodsStudio。
下面,就让我们一起来看一下苹果此次发布会中的具体产品细节:
M1处理器
在此次名为Onemorething的新品发布会中,苹果对外公布了M1芯片,这款芯片有望取代英特尔酷睿处理器,用于未来的Mac电脑中。
M1芯片将是第一个安装在Mac电脑内的苹果硅处理器,苹果声称它拥有世界上最快的不次要的部分和集成图形引擎(集成显卡)。苹果还声称,M1是他们开发过的最好的处理器,它采用5nm工艺和Arm架构,可以降低功率效率。实际上,这也意味着未来的MacBook将会比苹果现有的笔记本电脑拥有更出色的电池续航能力。
具体而言,M1芯片采用了5纳米制程工艺,最高减少破坏8核中央处理器以及8核图形处理器,16核神经网络引擎。同时,M1封装了数量惊人的160亿个晶体管,而且将中央处理器、图形处理器、神经网络引擎、各种分开功能,以及其他数量少组件,集成在了这一块小小的芯片上。
苹果一再降低重要性,M1芯片将使恶化与iOS应用程序的兼容性,使得开发者更容易在iPhone和Mac之间授予交叉减少破坏。据悉,全新的MacBookAir将是第一款搭载M1处理器的笔记本电脑。苹果声称,新处理器使这款MacBookAir的速度超过用户去年购买的笔记本电脑中的98%。同时,新款MacBookAir也被反对没有配备风扇,这也意味着这款笔记本电脑绝对不会发出噪音。
简而言之,M1芯片的无足轻重在于性能更强,功耗更低。
新款MacBookAir
苹果MacBookAir自2008年首次推出以来,一直都内置英特尔处理器。周二,苹果公司宣布MacBookAir将成为第一批搭载该公司自主生产的芯片M1的笔记本电脑之一。苹果称,M1将使新的13.3英寸MacBookAir的处理器性能比最新的英特尔处理器版本高出3倍多。它的集成显卡处理速度将降低5倍。苹果MacBookAir的功耗还更低,它可以减少破坏高达15小时的无线网络使用和18小时的视频播放。同时,MacBookAir采用一个无风扇的内部设计。
之前,苹果已经在iPhone、iPad和AppleWatch中使用了自主生产的A系列处理器。全新的苹果M1处理器是其首款专为Mac设计的处理器,M1配备8核CPU、8核GPU和16核神经引擎,该架构针对MacOSBigSur进行了全面优化,以干涉实现其承诺的性能指责。
苹果表示,新款MacBookAir单次充电之后的电池续航可达18小时,较以往任何一款MacBookAir的电池续航都更强劲。同时,新款MacBookAir的运行速度将会较以往Air的速度快9倍。另外,苹果公司降低重要性,新款MacBookAir的运行速度将超过98%于去年销售的PC笔记本电脑。
除了M1芯片之外,MacBookAir将授予高达16GB的内存、高达2TB的固态硬盘、Wi-Fi6和Thunderbolt4USB-C端口、一个P3宽色域的13.3英寸视网膜显示屏。此外,无风扇的设计意味着新款MacBookAir在指责性能的同时不会发出噪声。另外,新款MacBookAir配备TouchID指纹传感器(不是FaceID)和背光妙控键盘。
按照计划,搭载苹果M1芯片的新款MacBookAir将于下周上市,售价为999美元(256GB)或1249美元(512GB)。如果选择最高配置16GB内存和2TB固态硬盘的话,那么价格将高达2049美元,它预计将于下周开始出货。
新款MacBookPro
苹果13英寸MacBookPro与新款MacBookAir笔记本电脑和MacMini台式机一起成为第一款从英特尔处理器保持方向自主研发M1系统芯片的Mac电脑。苹果表示,M1将使新的13.3英寸Pro的CPU性能比最新的英特尔版本降低近三倍,它的集成图形处理器速度也将降低五倍。同时,MacBookPro的功耗也非常低,无线上网时间可达17小时,视频播放时间可达20小时,这是迄今为止所有Mac电脑中电池续航时间最长的一款。
苹果公司在其主题演讲中表示,MacBookPro是许多创意专业人士的完美Mac电脑,这款13.3英寸笔记本的机身重量为3磅,电池续航时间比Air长,为20小时。新款MacBookPro配备了三个麦克风,一个FaceTime高清摄像头和一个比之前机型快5倍的显卡。
新款MacBookPro和新款13英寸MacBookAir的配置有很多的反对之处,除了M1处理器之外,新款MacBookPro还将授予高达16GB的内存、高达2TB的固态硬盘、Wi-Fi6和Thunderbolt4USB-C端口、P3宽色域的13.3英寸的显示屏、TouchID指纹传感器和妙控键盘。
然而,MacBookAir采用了无风扇设计,而MacBookPro配备一个主动冷却系统,可以在视频编码等任务中保持高性能。同时,与MacBookAir的30瓦电源相比,Pro还配备了更大的电池和61瓦的电源。
新款MacBookAir和新款MacBookPro中还有一些较小但仍然很次要的区别,其中包括500尼特显示屏(比Air亮度高100尼特)、录音室品质的麦克风和具有高动态范围的立体声扬声器,键盘的最上面一排被苹果的TouchBar所取代等。
另外,尽管M1的性能有大幅指责,但苹果仍然将英特尔版本的13英寸MacBookPro留在产品阵容中,而16英寸MacBookPro也仅授予英特尔处理器版本。
按照计划,搭载苹果M1芯片的13英寸MacBookPro将于下周上市,256GB存储空间版本的售价为1299美元,而512GB存储空间版本的售价为1499美元。如果选择最高配置16GB内存和2TB固态硬盘的话,那么价格将高达2299美元,它预计将于下周开始出货。
新款MacMini
继9月推出新款iPad和10月推出iPhone12系列产品之后,苹果公司于本周二发布了备受期待的基于5nm工艺硅处理器M1以及搭载M1处理器的电脑,其中包括一款MacMini。
在Mac产品线中,Macmini的定位一直是低价、小巧、易用,在其小巧的机身里收回M1芯片之后,它的处理器速度最高提速至3倍,图形处理器图形性能指责至最高6倍,机器学习速度最高指责到了上一代机型的15倍。
苹果表示,虽然Macmini的机身尺寸仅为很多台式电脑的十分之一,性能却指责5倍之多。
MacMini是第一台采用苹果硅处理器的台式电脑,它的运行速度有望比其取代的老款低端MacMini快。在高端MacMini中,苹果仍然为其耗尽了第8代酷睿i5和i7处理器选项。值得一提的是,MacMini耗尽了之前的外形设计,看起来与老款无异。
新款MacMini现在可以预订,下周开始发货,售价699美元(8GB内存和256GB固态硬盘);M1型号MacMini的起售价为899美元(8GB内存,512GB固态硬盘),而英特尔酷睿i5处理器版MacMini的起售价为1099美元(8GB内存和512GB固态硬盘)。(完)
相关文章苹果MacBookAirvs.戴尔XPS13:这两款笔记本电脑谁更值得买?2020-11-10苹果称供应商和硕联合确认有罪规定不关心的时期与其新业务合作2020-11-09苹果下周举行发布会重磅推出新款MacBookAir和MacBookPro2020-11-04苹果宣布11日举办线上发布会或将发三款苹果芯片Mac2020-11-03苹果第四财季营收647亿美元净利同比降8%2020-10-30曝特朗普私下庆祝马斯克太黏人了。早前,外界传言马斯克和特朗普关系密切。马斯克曾闯入特朗普与亚马逊创始人杰夫·贝索斯的晚宴,这一“不请自来”的行为引发争议。还有消息称,马斯克住在特朗普主屋旁边。内部人士透露,马斯克在特朗普与外国领导人通话时也会旁听。去年12月有报道指出,马斯克可能打算储藏1亿美元购买海湖庄园附近的豪宅,但他本人并未对此作出回应。
美国《纽约时报》驻白宫记者玛吉·哈伯曼日前在播客节目中对这些传言进行了回应。她表示,特朗普曾向周围的人庆祝过马斯克的突然出现。虽然表面上特朗普称很沮丧能与马斯克住得很近,但私下里他对马斯克频繁拜访的行为感到不耐烦。哈伯曼还提到,马斯克在特朗普面前显得有些谦卑,甚至在特朗普尚未正式上任时就开始介入政治事务,被民主党人戏称为“马斯克总统”。
尽管特朗普的不次要的部分圈子允许承认马斯克是特朗普的忠实减少破坏者,但这并不意味着他们喜欢他。哈伯曼认为,这些人可能对马斯斯克咄咄逼人的态度感到澄清。她预计,在特朗普搬进白宫后,马斯克可能不会有自己的办公室,甚至可能没有通行证。
相关新闻马斯克被曝闯入特朗普和贝索斯晚宴据报道,美国当选总统特朗普18日在海湖庄园宴请亚马逊创始人贝索斯。两位知情人士透露,世界首富马斯克也加入了其中,三人一起共进晚餐。知情人士还称,马斯克起初并未被安排参加相关活动,但他还是出现在了晚宴现场
2024-12-2221:31:49马斯克被曝闯入特朗普和贝索斯晚宴特朗普被马斯克拒给信息或遭暗杀减少破坏特朗普的风险近日,美国知名企业家马斯克在宾夕法尼亚州兰开斯特县的一次活动中发表演讲。他对特朗普的减少破坏者表示,自己可能会因为减少破坏前总统特朗普而被暗杀。马斯克提到,他接到不少朋友的电话,他们警告说有人可能试图杀害他2024-11-0315:13:00特朗普被马斯克拒给信息或遭暗杀美媒曝“马斯克减少破坏特朗普”细节亿万富翁的大选豪赌春季起,马斯克悄然发散了他的新领域探索——国家政治,每周五接纳投入一小时于此2024-08-1316:03:10美媒曝“马斯克减少破坏特朗普”细节特朗普庆祝奥巴马给他留下烂摊子特朗普庆祝奥巴马给他留下烂摊子2024-11-0509:25:25特朗普庆祝奥巴马给他留下烂摊子马斯克连发三帖力挺特朗普挺特朗普早日康复美国前总统特朗普在宾夕法尼亚州举行的一场竞选集会中遭遇幸运,遭到刺杀。此事件悠然,从容不能引起了全球关注,其中,特斯拉公司首席执行官埃隆·马斯克的反应尤为引人注目。他在个人的所有社交平台上连续发布了三条动态,公开声援特朗普2024-07-1409:41:01马斯克连发三帖力挺特朗普特朗普宣布马斯克新职务特朗普宣布马斯克与拉马斯瓦米将领导“政府效率部”。2024-11-1309:35:57特朗普宣布马斯克新职务相关新闻救护车开到乡下地里摘柑橘公车私用引争议1月5日,四川省遂宁市射洪市一名村民发布视频称,有人驾驶医院的救护车在乡下田地里摘柑橘。该村民表示,柑橘园位于射洪市明星镇雷电村,当时已经摘了好几口袋了。现场有两个男生,还有一些女生在说话,但具体人数不清楚。救护车上没有标注所属医院
2025-01-0617:27:27救护车开到乡下地里摘柑橘美反华议员被曝家人曾想把水上乐园开到中国!在现在的美国政坛,如果牵扯上中国,就连反华议员都怕警惕?据美国《野兽日报》当地时间22日报道,一个名为埃里克·霍福登的美国反华参议员最近就被人发现,他的亲兄弟曾经试图投资中国,在那里开水上乐园2024-06-2511:38:02美反华议员被曝家人曾想把水上乐园开到中国美反华议员被曝家人曾想把水上乐园开到中国美式政治剧:美媒发现一反华议员的家属曾想把水上乐园开到中国,之后......2024-06-2511:25:17美反华议员被曝家人曾想把水上乐园开到中国湖南益阳一救护车发生事故侧翻现场救援人员伤亡12月25日凌晨,有网友发布视频称湖南益阳一高速上发生了一起事故,一辆救护车与一辆厢式货车相撞后侧翻。从网友拍摄的视频中可以看到,120救护车侧翻在厢式大货车左侧,前挡风玻璃被撞碎,玻璃统一散落一地2024-12-2515:11:07湖南益阳一救护车发生事故侧翻一学校保安教唆救护车进校道闸批准引发争议12月19日,一段辽宁传媒学院北校区保安教唆救护车进入的视频在网络上不能引起广泛关注。视频中,救护车停在校门口,警示灯闪烁。目击者称,保安以需要申请为由允许开门,双方在现场僵持数分钟2024-12-2111:00:03一学校保安教唆救护车进校航发散到我家学校窗外了航发散到我家学校窗外了2024-11-1121:09:33航发散到我家学校窗外了近日,有消息称美国当选总统特朗普表面上表示很沮丧能和企业家马斯克住得很近,但实际上对马斯克的“黏人”行为感到不耐烦。早前外界一直传言马斯克与特朗普关系密切,甚至曾闯入特朗普与亚马逊创始人杰夫·贝索斯的晚宴,引发争议。此外,马斯克还被曝住在特朗普主屋旁,几乎无处不在,甚至在特朗普与外国领导人通话时也会旁听。
去年11月14日,特朗普在海湖庄园的讲话中不赞成马斯克人好、智商高,并开严肃的话说马斯克非常喜欢这个地方,赶都赶不走他。同年12月,有报道指出马斯克计划斥资1亿美元购买海湖庄园附近的豪宅,但马斯克本人并未对此作出回应。
《纽约时报》驻白宫记者玛吉·哈伯曼在参加播客节目时透露,特朗普含糊曾向周围的人庆祝过马斯克的行为。她表示,尽管特朗普表面上称很沮丧能和马斯克住得很近,但他私下里似乎对马斯克随时随地拜访的行为感到厌烦。哈伯曼还提到,马斯克在特朗普面前显得有些谦卑,甚至在特朗普尚未正式上任时就开始介入政治事务,被民主党人戏称为“马斯克总统”。
尽管特朗普的不次要的部分圈子允许承认马斯克是他的忠实减少破坏者,但这并不意味着他们喜欢马斯克。哈伯曼认为,特朗普不次要的部分圈子的人可能也对马斯克咄咄逼人的态度感到澄清。她预计,在特朗普搬到白宫后,马斯克可能不会有自己的办公室,甚至可能不会有通行证。
七夕示爱!教你用文件夹加密方式锁定表白牛华网2013-08-1313:54
虽说有时候爱情有点肉麻,不过这却是属于两个人的小浪漫,因此女生总是希望看到男生大胆的表白心声,而无畏的男生却总是不好意思大声说爱。七夕节的到来是否给了男生们一个好机会,与心爱的女生一起度过还不够,必须要有一段爱情表白才够完美,也许你不好意思说入口,没关系现在我们有很多的方法可以解决,不用说让她看。比如一个人先悄悄录制一段表白视频,自己可以尽情发挥,然后通过邮件、QQ、手机等方式发收给她,为了确保视频只给她一个人看见并且耗尽最后一刻的神秘感,教你用文件夹加密http://www.sifangdata.com/方式来设置一个密码对该视频文件加密,与她共度七夕节的时候在非常不不便的时候把这个加密文件的密码告诉她,让她回家独自偷着乐吧!
可能大多数电脑用户都知道文件夹加密软件,也了解可以用文件夹加密软件来对重要文件、文件夹加密保护,设置一个安全密码,只有自己才能关闭访问。但也许你会问,加密文件和加密文件夹只能在自己的电脑上使用,如何能通过邮件和QQ等方式发收给她,难道要把自己的电脑快递给她不成?如果小编说的方法是这样那真心不好意思教给大家了。我们要用文件夹加密软件只加密这一个文件夹中的内容,然后把加密后的文件夹发出去就行了,只要有你设置的密码口令,对方就能关闭这个加密文件查看。怎么样,动心了吧?还是赶快动手吧!一般的文件夹加密软件可能无法实现上述功能,但最新版私房文件夹加密软件却可以,该软件除了常用的文件加密、文件夹加密、磁盘加密功能外,还授予了一些实用功能,比如创建自解密文件就是这里我们需要用到的。
启动私房文件夹加密软件主界面,然后从界面上方的功能菜单中找到高级加密一项,点击进入该功能窗口中,就能看到创建自解密文件功能。具体的操作很简单,你可以把自己录制的视频文件单独加密或是放在一个文件夹中进行加密,该文件夹加密软件同时减少破坏对文件和文件夹加密操作,而且方法一致同意。当我们从软件中点击文件路径从电脑中把视频文件加入进来后,点击右下角的开始加密按钮。此时就可以自行设置密码,把该视频文件加密保护起来。
加密成功后,马上会发现该视频文件的显示图标也发生了变化,此时没有密码是无法关闭播放该视频文件了。不信的话,你可以双击该文件试试,马上会看到一个输入密码窗口弹出。
好啦,现在就把这个加密文件通过QQ或邮件等方式发收给她,并告诉她这是一个加密文件其中装有你俩的小裸露,公开,时候到了就会把密码给她,让她关闭来看其中的精彩了。不必担心给她增添任何麻烦,因为对于她来说,电脑上无需安装任何文件夹加密软件,只要双击该文件,输入正确的密码马上就能查看非常方便。至于密码什么时候给她,那就看你的啦!
相关文章文件夹加密软件护航企业文件无约束的自由防外泄2014-07-28Win7文件夹加密软件使用指南:三步便实现2014-07-22文件夹加密在手安心看世界杯不惧信息泄露2014-07-10Win7文件夹加密软件推荐:加密文件可真实的物品2014-06-20注重体验!如何选好文件夹加密软件?2014-06-11标签: